生成式人工智能模型潜空间中识别的质量特征的可测量性

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
{"title":"生成式人工智能模型潜空间中识别的质量特征的可测量性","authors":"","doi":"10.1016/j.cirp.2024.04.073","DOIUrl":null,"url":null,"abstract":"<div><p>Deep Learning can learn complex properties from image datasets, which are difficult to model with traditional machine vision algorithms, inherently in the form of disentangled latent spaces. With latent spaces of Generative AI models, a feature extraction method to access these properties can be implemented. This work evaluates whether the learned properties can be measured in the latent space. Quantity and quantity-value scale properties and the measurability of the dimensional quality characteristic ‘filling degree’ using a linear calibration function are demonstrated for an industrial machine vision application. An uncertainty indicator between 0.4–0.9 mm is estimated for the latent space measurements.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 389-392"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000866/pdfft?md5=ffa0ca65dfa41964cf67cbc1b46e291d&pid=1-s2.0-S0007850624000866-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Measurability of quality characteristics identified in latent spaces of Generative AI Models\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep Learning can learn complex properties from image datasets, which are difficult to model with traditional machine vision algorithms, inherently in the form of disentangled latent spaces. With latent spaces of Generative AI models, a feature extraction method to access these properties can be implemented. This work evaluates whether the learned properties can be measured in the latent space. Quantity and quantity-value scale properties and the measurability of the dimensional quality characteristic ‘filling degree’ using a linear calibration function are demonstrated for an industrial machine vision application. An uncertainty indicator between 0.4–0.9 mm is estimated for the latent space measurements.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 389-392\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000866/pdfft?md5=ffa0ca65dfa41964cf67cbc1b46e291d&pid=1-s2.0-S0007850624000866-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000866\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000866","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

深度学习可以从图像数据集中学习复杂的属性,而传统的机器视觉算法很难对这些属性进行建模。有了生成式人工智能模型的潜空间,就可以实现获取这些属性的特征提取方法。这项工作评估了所学属性是否可以在潜空间中测量。在一个工业机器视觉应用中,使用线性校准函数展示了数量和量值标度属性以及维度质量特征 "填充度 "的可测量性。潜空间测量的不确定性指标估计在 0.4-0.9 毫米之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurability of quality characteristics identified in latent spaces of Generative AI Models

Deep Learning can learn complex properties from image datasets, which are difficult to model with traditional machine vision algorithms, inherently in the form of disentangled latent spaces. With latent spaces of Generative AI models, a feature extraction method to access these properties can be implemented. This work evaluates whether the learned properties can be measured in the latent space. Quantity and quantity-value scale properties and the measurability of the dimensional quality characteristic ‘filling degree’ using a linear calibration function are demonstrated for an industrial machine vision application. An uncertainty indicator between 0.4–0.9 mm is estimated for the latent space measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信