用于同时实时监测农民活动和作物健康状况的无人机多视角监测框架

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Anton Louise P. De Ocampo , Francis Jesmar P. Montalbo
{"title":"用于同时实时监测农民活动和作物健康状况的无人机多视角监测框架","authors":"Anton Louise P. De Ocampo ,&nbsp;Francis Jesmar P. Montalbo","doi":"10.1016/j.atech.2024.100466","DOIUrl":null,"url":null,"abstract":"<div><p>Current remote sensing technologies employing Unmanned Aerial Vehicles (UAVs) for farm monitoring have shown promise in characterizing the environment through diverse sensor systems, including hyperspectral cameras, LiDAR, thermal cameras, and RGB sensors. However, these solutions often specialize in either activity recognition or crop monitoring, but not both. To address this limitation and enhance efficacy, we propose a multi-vision monitoring (MVM) framework capable of simultaneously recognizing farm activities and assessing crop health. Our approach involves computer vision techniques that transform aerial videos into sequential images to extract essential environmental features. Central to our framework are two pivotal components: the Farmer Activity Recognition (FAR) algorithm and the Crop Image Analysis (CIA). The FAR algorithm introduces a novel feature extraction method capturing motion across various maps, enabling distinct feature sets for each activity. Meanwhile, the CIA component utilizes the normalized Triangular Greenness Index (nTGI) to estimate leave chlorophyll levels, an important indicator for crop health. By unifying these components, we achieve dual functionality—activity recognition and crop health estimation—using identical input data, thereby enhancing efficiency and versatility in farm monitoring. Our framework employs a diverse range of machine learning models, demonstrating the potential of our extracted features to address the defined problem effectively in unison.</p></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772375524000716/pdfft?md5=7e78eee8a5852881b491e370c13b56d7&pid=1-s2.0-S2772375524000716-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A multi-vision monitoring framework for simultaneous real-time unmanned aerial monitoring of farmer activity and crop health\",\"authors\":\"Anton Louise P. De Ocampo ,&nbsp;Francis Jesmar P. Montalbo\",\"doi\":\"10.1016/j.atech.2024.100466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current remote sensing technologies employing Unmanned Aerial Vehicles (UAVs) for farm monitoring have shown promise in characterizing the environment through diverse sensor systems, including hyperspectral cameras, LiDAR, thermal cameras, and RGB sensors. However, these solutions often specialize in either activity recognition or crop monitoring, but not both. To address this limitation and enhance efficacy, we propose a multi-vision monitoring (MVM) framework capable of simultaneously recognizing farm activities and assessing crop health. Our approach involves computer vision techniques that transform aerial videos into sequential images to extract essential environmental features. Central to our framework are two pivotal components: the Farmer Activity Recognition (FAR) algorithm and the Crop Image Analysis (CIA). The FAR algorithm introduces a novel feature extraction method capturing motion across various maps, enabling distinct feature sets for each activity. Meanwhile, the CIA component utilizes the normalized Triangular Greenness Index (nTGI) to estimate leave chlorophyll levels, an important indicator for crop health. By unifying these components, we achieve dual functionality—activity recognition and crop health estimation—using identical input data, thereby enhancing efficiency and versatility in farm monitoring. Our framework employs a diverse range of machine learning models, demonstrating the potential of our extracted features to address the defined problem effectively in unison.</p></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772375524000716/pdfft?md5=7e78eee8a5852881b491e370c13b56d7&pid=1-s2.0-S2772375524000716-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375524000716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524000716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目前采用无人飞行器(UAV)进行农场监测的遥感技术已显示出通过各种传感器系统(包括高光谱相机、激光雷达、热像仪和 RGB 传感器)描述环境特征的前景。然而,这些解决方案通常只擅长活动识别或作物监测,而无法同时进行这两项工作。为了解决这一局限性并提高效率,我们提出了一种能够同时识别农场活动和评估作物健康的多视觉监控(MVM)框架。我们的方法采用计算机视觉技术,将航拍视频转换为连续图像,以提取基本环境特征。我们的框架由两个关键部分组成:农民活动识别(FAR)算法和作物图像分析(CIA)。FAR 算法引入了一种新颖的特征提取方法,可捕捉各种地图上的运动,从而为每种活动提供不同的特征集。同时,CIA 组件利用归一化三角绿度指数(nTGI)来估算叶绿素水平,这是农作物健康的一个重要指标。通过统一这些组件,我们利用相同的输入数据实现了活动识别和作物健康估测的双重功能,从而提高了农场监控的效率和通用性。我们的框架采用了多种机器学习模型,展示了我们提取的特征在统一有效地解决定义问题方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-vision monitoring framework for simultaneous real-time unmanned aerial monitoring of farmer activity and crop health

Current remote sensing technologies employing Unmanned Aerial Vehicles (UAVs) for farm monitoring have shown promise in characterizing the environment through diverse sensor systems, including hyperspectral cameras, LiDAR, thermal cameras, and RGB sensors. However, these solutions often specialize in either activity recognition or crop monitoring, but not both. To address this limitation and enhance efficacy, we propose a multi-vision monitoring (MVM) framework capable of simultaneously recognizing farm activities and assessing crop health. Our approach involves computer vision techniques that transform aerial videos into sequential images to extract essential environmental features. Central to our framework are two pivotal components: the Farmer Activity Recognition (FAR) algorithm and the Crop Image Analysis (CIA). The FAR algorithm introduces a novel feature extraction method capturing motion across various maps, enabling distinct feature sets for each activity. Meanwhile, the CIA component utilizes the normalized Triangular Greenness Index (nTGI) to estimate leave chlorophyll levels, an important indicator for crop health. By unifying these components, we achieve dual functionality—activity recognition and crop health estimation—using identical input data, thereby enhancing efficiency and versatility in farm monitoring. Our framework employs a diverse range of machine learning models, demonstrating the potential of our extracted features to address the defined problem effectively in unison.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信