{"title":"利用注意力模型为电子商务产品评论进行句子分类","authors":"Nagendra N, Chandra J","doi":"10.3844/jcssp.2024.535.547","DOIUrl":null,"url":null,"abstract":": The importance of aspect extraction in text classification, particularly in the e-commerce sector. E-commerce platforms generate vast amounts of textual data, such as comments, product descriptions, and customer reviews, which contain valuable information about various aspects of products or services. Aspect extraction involves identifying and classifying individual traits or aspects mentioned in textual reviews to understand customer opinions, improve products, and enhance the customer experience. The role of product reviews in e-commerce is discussed, emphasizing their value in aiding customers' purchase decisions and guiding businesses in product stocking and marketing strategies. Reviews are essential for boosting sales potential, maintaining a good reputation, and promoting brand recognition. Customers extensively research product reviews from different sources before purchasing, making them vital user-generated content for e-commerce businesses. The current work provided an efficient and novel classification model for sentence classification using the ABNAM model. The automated text classification models available cannot categorize the data into sixteen distinct classes. The technologies applied for the mentioned work contain TF-IDF, N-gram, CNN, linear SVM, random forest, Naïve bays, and ABNAM with significant results. The best-performing ML method for the successful classification of a given sentence into one of the sixteen categories is achieved with the proposed model named the based Neural Attention Model (ABNAM), which has the highest accuracy at 97%. The research acclaimed ABNAM as a novel classification model with the highest-class categorizations.","PeriodicalId":40005,"journal":{"name":"Journal of Computer Science","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentence Classification Using Attention Model for E-Commerce Product Review\",\"authors\":\"Nagendra N, Chandra J\",\"doi\":\"10.3844/jcssp.2024.535.547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The importance of aspect extraction in text classification, particularly in the e-commerce sector. E-commerce platforms generate vast amounts of textual data, such as comments, product descriptions, and customer reviews, which contain valuable information about various aspects of products or services. Aspect extraction involves identifying and classifying individual traits or aspects mentioned in textual reviews to understand customer opinions, improve products, and enhance the customer experience. The role of product reviews in e-commerce is discussed, emphasizing their value in aiding customers' purchase decisions and guiding businesses in product stocking and marketing strategies. Reviews are essential for boosting sales potential, maintaining a good reputation, and promoting brand recognition. Customers extensively research product reviews from different sources before purchasing, making them vital user-generated content for e-commerce businesses. The current work provided an efficient and novel classification model for sentence classification using the ABNAM model. The automated text classification models available cannot categorize the data into sixteen distinct classes. The technologies applied for the mentioned work contain TF-IDF, N-gram, CNN, linear SVM, random forest, Naïve bays, and ABNAM with significant results. The best-performing ML method for the successful classification of a given sentence into one of the sixteen categories is achieved with the proposed model named the based Neural Attention Model (ABNAM), which has the highest accuracy at 97%. The research acclaimed ABNAM as a novel classification model with the highest-class categorizations.\",\"PeriodicalId\":40005,\"journal\":{\"name\":\"Journal of Computer Science\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jcssp.2024.535.547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jcssp.2024.535.547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sentence Classification Using Attention Model for E-Commerce Product Review
: The importance of aspect extraction in text classification, particularly in the e-commerce sector. E-commerce platforms generate vast amounts of textual data, such as comments, product descriptions, and customer reviews, which contain valuable information about various aspects of products or services. Aspect extraction involves identifying and classifying individual traits or aspects mentioned in textual reviews to understand customer opinions, improve products, and enhance the customer experience. The role of product reviews in e-commerce is discussed, emphasizing their value in aiding customers' purchase decisions and guiding businesses in product stocking and marketing strategies. Reviews are essential for boosting sales potential, maintaining a good reputation, and promoting brand recognition. Customers extensively research product reviews from different sources before purchasing, making them vital user-generated content for e-commerce businesses. The current work provided an efficient and novel classification model for sentence classification using the ABNAM model. The automated text classification models available cannot categorize the data into sixteen distinct classes. The technologies applied for the mentioned work contain TF-IDF, N-gram, CNN, linear SVM, random forest, Naïve bays, and ABNAM with significant results. The best-performing ML method for the successful classification of a given sentence into one of the sixteen categories is achieved with the proposed model named the based Neural Attention Model (ABNAM), which has the highest accuracy at 97%. The research acclaimed ABNAM as a novel classification model with the highest-class categorizations.
期刊介绍:
Journal of Computer Science is aimed to publish research articles on theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems. JCS updated twelve times a year and is a peer reviewed journal covers the latest and most compelling research of the time.