{"title":"微纤维素-粘土复合薄膜的无氟表面改性:疏水性对气体阻隔性能的影响","authors":"M. A. Poothanari, Y. Leterrier","doi":"10.3390/surfaces7020019","DOIUrl":null,"url":null,"abstract":"Diffusion barrier composite films based on microfibrillated cellulose (MFC) and clay were developed with attention paid to the influence of thermal annealing and a fluorine-free surface silylation on their microstructure, water contact angle (WCA), mechanical properties, oxygen transmission rate (OTR), and water vapor transmission rate (WVTR). The OTR of MFC at 23 °C increased from 1.2 to 25.3 cm3/m2/day/bar as relative humidity increased from 50% to 80%. Annealing increased the film’s crystallinity, surface roughness, and hydrophobicity, while decreasing its OTR by 20% at 80%RH. The addition of clay led to a 30% decrease of OTR at 80%RH due to partial exfoliation and to a 50% decrease when combined with annealing. Silylation increased the hydrophobicity of surface of the film and its combination with clay and annealing led to a WCA of 146.5°. The combination of clay, annealing, and silylation considerably reduced the OTR at 80%RH to a value of 8 cm3/m2/day/bar, and the WVTR at 23 °C and 50%RH from 49 g/m2/day for MFC to 22 g/m2/day. The reduction of OTR and WVTR was found to correlate with the increase in surface hydrophobicity of the film, which was attributed to the reduced access of water molecules within the MFC network.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"30 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance\",\"authors\":\"M. A. Poothanari, Y. Leterrier\",\"doi\":\"10.3390/surfaces7020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion barrier composite films based on microfibrillated cellulose (MFC) and clay were developed with attention paid to the influence of thermal annealing and a fluorine-free surface silylation on their microstructure, water contact angle (WCA), mechanical properties, oxygen transmission rate (OTR), and water vapor transmission rate (WVTR). The OTR of MFC at 23 °C increased from 1.2 to 25.3 cm3/m2/day/bar as relative humidity increased from 50% to 80%. Annealing increased the film’s crystallinity, surface roughness, and hydrophobicity, while decreasing its OTR by 20% at 80%RH. The addition of clay led to a 30% decrease of OTR at 80%RH due to partial exfoliation and to a 50% decrease when combined with annealing. Silylation increased the hydrophobicity of surface of the film and its combination with clay and annealing led to a WCA of 146.5°. The combination of clay, annealing, and silylation considerably reduced the OTR at 80%RH to a value of 8 cm3/m2/day/bar, and the WVTR at 23 °C and 50%RH from 49 g/m2/day for MFC to 22 g/m2/day. The reduction of OTR and WVTR was found to correlate with the increase in surface hydrophobicity of the film, which was attributed to the reduced access of water molecules within the MFC network.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/surfaces7020019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces7020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance
Diffusion barrier composite films based on microfibrillated cellulose (MFC) and clay were developed with attention paid to the influence of thermal annealing and a fluorine-free surface silylation on their microstructure, water contact angle (WCA), mechanical properties, oxygen transmission rate (OTR), and water vapor transmission rate (WVTR). The OTR of MFC at 23 °C increased from 1.2 to 25.3 cm3/m2/day/bar as relative humidity increased from 50% to 80%. Annealing increased the film’s crystallinity, surface roughness, and hydrophobicity, while decreasing its OTR by 20% at 80%RH. The addition of clay led to a 30% decrease of OTR at 80%RH due to partial exfoliation and to a 50% decrease when combined with annealing. Silylation increased the hydrophobicity of surface of the film and its combination with clay and annealing led to a WCA of 146.5°. The combination of clay, annealing, and silylation considerably reduced the OTR at 80%RH to a value of 8 cm3/m2/day/bar, and the WVTR at 23 °C and 50%RH from 49 g/m2/day for MFC to 22 g/m2/day. The reduction of OTR and WVTR was found to correlate with the increase in surface hydrophobicity of the film, which was attributed to the reduced access of water molecules within the MFC network.