根据卡诺效率定理得出的 300 K 温度下 GaP_(1-x) 〖Sb〗_x 合金结太阳能电池的最高效率

Huynh Van Cong
{"title":"根据卡诺效率定理得出的 300 K 温度下 GaP_(1-x) 〖Sb〗_x 合金结太阳能电池的最高效率","authors":"Huynh Van Cong","doi":"10.59324/ejaset.2024.2(3).04","DOIUrl":null,"url":null,"abstract":"In n^+ (p^+)-p(n) [X(x)≡GaP_(1-x) Sb_x]-alloy junction solar cells at T=300 K, 0≤x≤1, by basing on the same physical model and the same treatment method, as those used in our recent works [1, 2], we will also investigate the maximal efficiencies, η_(Imax.(IImax.)), obtained at the open circuit voltage V_oc (=V_(ocI(ocII))), according to highest hot reservoir temperatures, T_H (K), obtained from the Carnot efficiency theorem, which was demonstrated by the use of the entropy law. In the present work, some concluding remarks are given in the following.(1) In the heavily doped emitter region, the effective density of electrons (holes), N^*, given in parabolic conduction (valence) bands, expressed as functions of the total dense impurity density, N, donor (acceptor)-radius, r_(d(a)), and x-concentration, is defined in Eq. (9d), as: N^* 〖(N,r〗_(d(a)),x)〖≡N-N〗_CDn(NDp) 〖(r〗_(d(a)),x), where N_CDn(NDp) is the Mott critical density in the metal-insulator transition, determined in Eq. (9a). Then, we have showed that (i) the origin of such the Mott’s criterium, Eq. (9a), is exactly obtained from the reduced effective Wigner-Seitz radius r_(sn(sp)), characteristic of interactions, as given in Equations (9b, 9c), and further (ii) N_(CDn(CDp)) is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail (EBT), as that demonstrated in [1]. (2) In Table 3n, for the n^+-p GaP_(1-x) 〖Sb〗_x-alloy junction solar cell and for r_(Sn(Cd))-radius, one obtains with increasing x=(0, 0.5, 1): η_(Imax.) (↘)= 32.83 %, 29.58 %, 23.77 %, according to T_H (↘)=446.6 K,426.0 K,393.5 K, at V_ocI=1.06 V,1.06 V,1.29 V, respectively.(3) In Table 5p, for the p^+-n GaP_(1-x) 〖Sb〗_x-alloy junction solar cell and for r_(Cd(Sn))-radius, one obtains with increasing x=(0, 0.5, 1): η_(IImax.) (↗)= 32.41 %, 34.32 %, 35.19 %, according to T_H (↗)=443.8 K,456.8 K,462.9 K, at V_ocII (V)[>V_ocI (V)]=1.17 V,1.25 V,1.44 V, respectively, suggesting that such η_(Imax.(IImax.))-and-T_H variations depend on V_ocII (V)[>V_ocI (V)]-ones.","PeriodicalId":517802,"journal":{"name":"European Journal of Applied Science, Engineering and Technology","volume":"120 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Efficiencies in GaP_(1-x) 〖Sb〗_x-Alloy Junction Solar Cells at 300 K, According to Highest Hot Reservoir Temperatures, Obtained from Carnot-Efficiency Theorem\",\"authors\":\"Huynh Van Cong\",\"doi\":\"10.59324/ejaset.2024.2(3).04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In n^+ (p^+)-p(n) [X(x)≡GaP_(1-x) Sb_x]-alloy junction solar cells at T=300 K, 0≤x≤1, by basing on the same physical model and the same treatment method, as those used in our recent works [1, 2], we will also investigate the maximal efficiencies, η_(Imax.(IImax.)), obtained at the open circuit voltage V_oc (=V_(ocI(ocII))), according to highest hot reservoir temperatures, T_H (K), obtained from the Carnot efficiency theorem, which was demonstrated by the use of the entropy law. In the present work, some concluding remarks are given in the following.(1) In the heavily doped emitter region, the effective density of electrons (holes), N^*, given in parabolic conduction (valence) bands, expressed as functions of the total dense impurity density, N, donor (acceptor)-radius, r_(d(a)), and x-concentration, is defined in Eq. (9d), as: N^* 〖(N,r〗_(d(a)),x)〖≡N-N〗_CDn(NDp) 〖(r〗_(d(a)),x), where N_CDn(NDp) is the Mott critical density in the metal-insulator transition, determined in Eq. (9a). Then, we have showed that (i) the origin of such the Mott’s criterium, Eq. (9a), is exactly obtained from the reduced effective Wigner-Seitz radius r_(sn(sp)), characteristic of interactions, as given in Equations (9b, 9c), and further (ii) N_(CDn(CDp)) is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail (EBT), as that demonstrated in [1]. (2) In Table 3n, for the n^+-p GaP_(1-x) 〖Sb〗_x-alloy junction solar cell and for r_(Sn(Cd))-radius, one obtains with increasing x=(0, 0.5, 1): η_(Imax.) (↘)= 32.83 %, 29.58 %, 23.77 %, according to T_H (↘)=446.6 K,426.0 K,393.5 K, at V_ocI=1.06 V,1.06 V,1.29 V, respectively.(3) In Table 5p, for the p^+-n GaP_(1-x) 〖Sb〗_x-alloy junction solar cell and for r_(Cd(Sn))-radius, one obtains with increasing x=(0, 0.5, 1): η_(IImax.) (↗)= 32.41 %, 34.32 %, 35.19 %, according to T_H (↗)=443.8 K,456.8 K,462.9 K, at V_ocII (V)[>V_ocI (V)]=1.17 V,1.25 V,1.44 V, respectively, suggesting that such η_(Imax.(IImax.))-and-T_H variations depend on V_ocII (V)[>V_ocI (V)]-ones.\",\"PeriodicalId\":517802,\"journal\":{\"name\":\"European Journal of Applied Science, Engineering and Technology\",\"volume\":\"120 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Science, Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59324/ejaset.2024.2(3).04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59324/ejaset.2024.2(3).04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 T=300 K,0≤x≤1 的 n^+ (p^+)-p(n) [X(x)≡GaP_(1-x) Sb_x]-合金结太阳能电池中,通过与我们最近的研究[1, 2]中使用的相同的物理模型和相同的处理方法,我们还将研究在开路电压 V_oc (=V_(ocI(ocII)) 下获得的最大效率 η_(Imax.(IImax.)), 在开路电压 V_oc (=V_(ocI(ocII)) 下获得,根据最高热储温度 T_H (K),从卡诺效率定理中获得,该定理通过使用熵定律来证明。(1)在重掺杂发射极区域,抛物线导(价)带中的电子(空穴)有效密度 N^*,用总密集杂质密度 N、供体(受体)半径 r_(d(a)) 和 x 浓度的函数表示,定义如式 (9d) 所示:N^* 〖(N,r〗_(d(a)),x)〖≡N-N〗_CDn(NDp) 〖(r〗_(d(a)),x),其中 N_CDn(NDp) 是金属-绝缘体转变中的莫特临界密度,由式 (9a) 确定。然后,我们证明了:(i) 公式 (9a) 所示莫特临界密度的来源可以从公式 (9b, 9c) 中给出的相互作用特征的还原有效 Wigner-Seitz 半径 r_(sn(sp))中精确获得;(ii) N_(CDn(CDp)) 只是指数导(价)带尾(EBT)中的局部电子(空穴)密度,如文献 [1] 所示。(2) 在表 3n 中,对于 n^+-p GaP_(1-x) 〖Sb〗_x 合金结太阳能电池和 r_(Sn(Cd))半径,随着 x=(0, 0.(↘)=32.83%、29.58%、23.77%,T_H (↘)=446.6 K、426.0 K、393.5 K,V_ocI=1.06 V、1.06 V、1.29 V。(3) 在表 5p 中,对于 p^+-n GaP_(1-x) 〖Sb〗_x-alloy 结太阳能电池和 r_(Cd(Sn))-半径,随着 x=(0,0.5,1)的增大可以得到:η_(IImax.) ()= 32.41 %,34.32 %,35.19 %,根据 T_H ()=443.8 K、456.8 K、462.9 K,V_ocII (V)[>V_ocI (V)]=1.17 V、1.25 V、1.44 V,表明这种 η_(Imax.(IImax.))-and-T_H 变化取决于 V_ocII (V)[>V_ocI (V)]-ones.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Efficiencies in GaP_(1-x) 〖Sb〗_x-Alloy Junction Solar Cells at 300 K, According to Highest Hot Reservoir Temperatures, Obtained from Carnot-Efficiency Theorem
In n^+ (p^+)-p(n) [X(x)≡GaP_(1-x) Sb_x]-alloy junction solar cells at T=300 K, 0≤x≤1, by basing on the same physical model and the same treatment method, as those used in our recent works [1, 2], we will also investigate the maximal efficiencies, η_(Imax.(IImax.)), obtained at the open circuit voltage V_oc (=V_(ocI(ocII))), according to highest hot reservoir temperatures, T_H (K), obtained from the Carnot efficiency theorem, which was demonstrated by the use of the entropy law. In the present work, some concluding remarks are given in the following.(1) In the heavily doped emitter region, the effective density of electrons (holes), N^*, given in parabolic conduction (valence) bands, expressed as functions of the total dense impurity density, N, donor (acceptor)-radius, r_(d(a)), and x-concentration, is defined in Eq. (9d), as: N^* 〖(N,r〗_(d(a)),x)〖≡N-N〗_CDn(NDp) 〖(r〗_(d(a)),x), where N_CDn(NDp) is the Mott critical density in the metal-insulator transition, determined in Eq. (9a). Then, we have showed that (i) the origin of such the Mott’s criterium, Eq. (9a), is exactly obtained from the reduced effective Wigner-Seitz radius r_(sn(sp)), characteristic of interactions, as given in Equations (9b, 9c), and further (ii) N_(CDn(CDp)) is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail (EBT), as that demonstrated in [1]. (2) In Table 3n, for the n^+-p GaP_(1-x) 〖Sb〗_x-alloy junction solar cell and for r_(Sn(Cd))-radius, one obtains with increasing x=(0, 0.5, 1): η_(Imax.) (↘)= 32.83 %, 29.58 %, 23.77 %, according to T_H (↘)=446.6 K,426.0 K,393.5 K, at V_ocI=1.06 V,1.06 V,1.29 V, respectively.(3) In Table 5p, for the p^+-n GaP_(1-x) 〖Sb〗_x-alloy junction solar cell and for r_(Cd(Sn))-radius, one obtains with increasing x=(0, 0.5, 1): η_(IImax.) (↗)= 32.41 %, 34.32 %, 35.19 %, according to T_H (↗)=443.8 K,456.8 K,462.9 K, at V_ocII (V)[>V_ocI (V)]=1.17 V,1.25 V,1.44 V, respectively, suggesting that such η_(Imax.(IImax.))-and-T_H variations depend on V_ocII (V)[>V_ocI (V)]-ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信