基于机器学习的机床动力学和颤振稳定性的子结构耦合

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
{"title":"基于机器学习的机床动力学和颤振稳定性的子结构耦合","authors":"","doi":"10.1016/j.cirp.2024.04.088","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of tool tip dynamics is vital for understanding machine tool behavior and chatter. Traditional methods involve several impact tests, finite element simulations, and the receptance coupling (RC) approach. However, substructure coupling necessitates multiple experiments and encounters difficulties due to complexities of capturing rotational dynamics. The intricate nature of RC inhibits its widespread industrial applicability in predicting tool tip dynamics. We introduce machine learning (ML)-based approach relying on a few experiments and computer vision to predict dynamics. Comparative analysis with direct experiments shows the ML-based method's potential to expedite dynamic identification with accuracy, chatter prediction, and machining process optimization.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 297-300"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000785062400101X/pdfft?md5=c0acabd51e0a0ecdb5599c6af56f4e0c&pid=1-s2.0-S000785062400101X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning based substructure coupling of machine tool dynamics and chatter stability\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate prediction of tool tip dynamics is vital for understanding machine tool behavior and chatter. Traditional methods involve several impact tests, finite element simulations, and the receptance coupling (RC) approach. However, substructure coupling necessitates multiple experiments and encounters difficulties due to complexities of capturing rotational dynamics. The intricate nature of RC inhibits its widespread industrial applicability in predicting tool tip dynamics. We introduce machine learning (ML)-based approach relying on a few experiments and computer vision to predict dynamics. Comparative analysis with direct experiments shows the ML-based method's potential to expedite dynamic identification with accuracy, chatter prediction, and machining process optimization.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 297-300\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S000785062400101X/pdfft?md5=c0acabd51e0a0ecdb5599c6af56f4e0c&pid=1-s2.0-S000785062400101X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000785062400101X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000785062400101X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

准确预测刀尖动态对于理解机床行为和颤振至关重要。传统方法包括多次冲击试验、有限元模拟和受体耦合(RC)方法。然而,下结构耦合需要进行多次试验,并且由于捕捉旋转动态的复杂性而遇到困难。RC 的复杂性阻碍了其在预测刀尖动态方面的广泛工业应用。我们引入了基于机器学习(ML)的方法,依靠少量实验和计算机视觉来预测动态。与直接实验的对比分析表明,基于 ML 的方法具有加快动态识别精度、颤振预测和加工过程优化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning based substructure coupling of machine tool dynamics and chatter stability

Accurate prediction of tool tip dynamics is vital for understanding machine tool behavior and chatter. Traditional methods involve several impact tests, finite element simulations, and the receptance coupling (RC) approach. However, substructure coupling necessitates multiple experiments and encounters difficulties due to complexities of capturing rotational dynamics. The intricate nature of RC inhibits its widespread industrial applicability in predicting tool tip dynamics. We introduce machine learning (ML)-based approach relying on a few experiments and computer vision to predict dynamics. Comparative analysis with direct experiments shows the ML-based method's potential to expedite dynamic identification with accuracy, chatter prediction, and machining process optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信