{"title":"基于多源遥感图像的平原破碎地区地块级作物分类","authors":"Qiao Zhang, Ziyi Luo, Yang Shen, Zhoufeng Wang","doi":"10.14358/pers.23-00053r2","DOIUrl":null,"url":null,"abstract":"Accurately obtaining crop cultivation extent and estimating the cultivated area are significant for adjusting regional planting structure. This article proposes a parcel-level crop classification method using time-series, medium-resolution, remote sensing images and single-phase, high-spatial-resolution,\n remote sensing images. The deep learning semantic segmentation network feature pyramid network with squeeze-and-excitation network (FPN???SENet) and multi-scale segmentation were used to extract cultivated land parcels from Gaofen-2 imagery, while the pixel-level crop types were classified\n by using support vector machine algorithms from time-series Sentinel-2 images. Then, the parcel-level crop classification was obtained from the pixel-level crop types and land parcels.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"2013 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parcel-Level Crop Classification in Plain Fragmented Regions Based on Multi-Source Remote Sensing Images\",\"authors\":\"Qiao Zhang, Ziyi Luo, Yang Shen, Zhoufeng Wang\",\"doi\":\"10.14358/pers.23-00053r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately obtaining crop cultivation extent and estimating the cultivated area are significant for adjusting regional planting structure. This article proposes a parcel-level crop classification method using time-series, medium-resolution, remote sensing images and single-phase, high-spatial-resolution,\\n remote sensing images. The deep learning semantic segmentation network feature pyramid network with squeeze-and-excitation network (FPN???SENet) and multi-scale segmentation were used to extract cultivated land parcels from Gaofen-2 imagery, while the pixel-level crop types were classified\\n by using support vector machine algorithms from time-series Sentinel-2 images. Then, the parcel-level crop classification was obtained from the pixel-level crop types and land parcels.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"2013 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00053r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00053r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parcel-Level Crop Classification in Plain Fragmented Regions Based on Multi-Source Remote Sensing Images
Accurately obtaining crop cultivation extent and estimating the cultivated area are significant for adjusting regional planting structure. This article proposes a parcel-level crop classification method using time-series, medium-resolution, remote sensing images and single-phase, high-spatial-resolution,
remote sensing images. The deep learning semantic segmentation network feature pyramid network with squeeze-and-excitation network (FPN???SENet) and multi-scale segmentation were used to extract cultivated land parcels from Gaofen-2 imagery, while the pixel-level crop types were classified
by using support vector machine algorithms from time-series Sentinel-2 images. Then, the parcel-level crop classification was obtained from the pixel-level crop types and land parcels.