{"title":"快速 ED 铣削高体积分数 Al/SiCp 金属基复合材料","authors":"","doi":"10.1016/j.cirp.2024.03.014","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces a fast ED-milling approach for machining of complex and precise geometries on high vol.% Al/SiC MMCs. It aims to overcome the issues of severe tool wear and low overall machining efficiency while conducting conventional milling. The material removal mechanism of this specific machining scheme is investigated through discharge phenomena observation and metallurgical analyzation, thereby, discharge current regulation methods for finishing and roughing were developed accordingly to further promote the material removal. Machining tests verify that, as compared to die-sinking EDM, the proposed method guarantees rather higher machining efficiency and satisfactory surface quality in machining of various cavities.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 121-124"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast ED-milling of high volume fraction Al/SiCp metal matrix composites\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work introduces a fast ED-milling approach for machining of complex and precise geometries on high vol.% Al/SiC MMCs. It aims to overcome the issues of severe tool wear and low overall machining efficiency while conducting conventional milling. The material removal mechanism of this specific machining scheme is investigated through discharge phenomena observation and metallurgical analyzation, thereby, discharge current regulation methods for finishing and roughing were developed accordingly to further promote the material removal. Machining tests verify that, as compared to die-sinking EDM, the proposed method guarantees rather higher machining efficiency and satisfactory surface quality in machining of various cavities.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 121-124\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000167\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000167","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
摘要
这项工作介绍了一种快速 ED 铣削方法,用于加工高浓度 Al/SiC MMC 上复杂而精确的几何形状。它旨在克服传统铣削加工中刀具磨损严重和整体加工效率低的问题。通过放电现象观察和金相分析,研究了这一特定加工方案的材料去除机理,并据此开发了精加工和粗加工的放电电流调节方法,以进一步提高材料去除率。加工试验证明,与沉模电火花加工相比,所提出的方法在加工各种型腔时可保证更高的加工效率和令人满意的表面质量。
Fast ED-milling of high volume fraction Al/SiCp metal matrix composites
This work introduces a fast ED-milling approach for machining of complex and precise geometries on high vol.% Al/SiC MMCs. It aims to overcome the issues of severe tool wear and low overall machining efficiency while conducting conventional milling. The material removal mechanism of this specific machining scheme is investigated through discharge phenomena observation and metallurgical analyzation, thereby, discharge current regulation methods for finishing and roughing were developed accordingly to further promote the material removal. Machining tests verify that, as compared to die-sinking EDM, the proposed method guarantees rather higher machining efficiency and satisfactory surface quality in machining of various cavities.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.