IMVis:超图中影响最大化算法评估的可视化分析

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jin Xu , Chaojian Zhang , Ming Xie , Xiuxiu Zhan , Luwang Yan , Yubo Tao , Zhigeng Pan
{"title":"IMVis:超图中影响最大化算法评估的可视化分析","authors":"Jin Xu ,&nbsp;Chaojian Zhang ,&nbsp;Ming Xie ,&nbsp;Xiuxiu Zhan ,&nbsp;Luwang Yan ,&nbsp;Yubo Tao ,&nbsp;Zhigeng Pan","doi":"10.1016/j.visinf.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>Influence maximization (IM) algorithms play a significant role in hypergraph analysis tasks, such as epidemic control analysis, viral marketing, and social influence analysis, and various IM algorithms have been proposed. The main challenge lies in IM algorithm evaluation, due to the complexity and diversity of the spreading processes of different IM algorithms in different hypergraphs. Existing evaluation methods mainly leverage statistical metrics, such as influence spread, to quantify overall performance, but do not fully unravel spreading characteristics and patterns. In this paper, we propose an exploratory visual analytics system, IMVis, to assist users in exploring and evaluating IM algorithms at the overview, pattern, and node levels. A spreading pattern mining method is first proposed to characterize spreading processes and extract important spreading patterns to facilitate efficient analysis and comparison of IM algorithms. Novel visualization glyphs are designed to comprehensively reveal both temporal and structural features of IM algorithms’ spreading processes in hypergraphs at multiple levels. The effectiveness and usefulness of IMVis are demonstrated through two case studies and expert interviews.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 2","pages":"Pages 13-26"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X24000172/pdfft?md5=8a25558f06e02bd13aac06e34e54a160&pid=1-s2.0-S2468502X24000172-main.pdf","citationCount":"0","resultStr":"{\"title\":\"IMVis: Visual analytics for influence maximization algorithm evaluation in hypergraphs\",\"authors\":\"Jin Xu ,&nbsp;Chaojian Zhang ,&nbsp;Ming Xie ,&nbsp;Xiuxiu Zhan ,&nbsp;Luwang Yan ,&nbsp;Yubo Tao ,&nbsp;Zhigeng Pan\",\"doi\":\"10.1016/j.visinf.2024.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Influence maximization (IM) algorithms play a significant role in hypergraph analysis tasks, such as epidemic control analysis, viral marketing, and social influence analysis, and various IM algorithms have been proposed. The main challenge lies in IM algorithm evaluation, due to the complexity and diversity of the spreading processes of different IM algorithms in different hypergraphs. Existing evaluation methods mainly leverage statistical metrics, such as influence spread, to quantify overall performance, but do not fully unravel spreading characteristics and patterns. In this paper, we propose an exploratory visual analytics system, IMVis, to assist users in exploring and evaluating IM algorithms at the overview, pattern, and node levels. A spreading pattern mining method is first proposed to characterize spreading processes and extract important spreading patterns to facilitate efficient analysis and comparison of IM algorithms. Novel visualization glyphs are designed to comprehensively reveal both temporal and structural features of IM algorithms’ spreading processes in hypergraphs at multiple levels. The effectiveness and usefulness of IMVis are demonstrated through two case studies and expert interviews.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"8 2\",\"pages\":\"Pages 13-26\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X24000172/pdfft?md5=8a25558f06e02bd13aac06e34e54a160&pid=1-s2.0-S2468502X24000172-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X24000172\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000172","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

影响最大化(IM)算法在流行病控制分析、病毒营销和社会影响分析等超图分析任务中发挥着重要作用,目前已提出了多种 IM 算法。由于不同 IM 算法在不同超图中的传播过程具有复杂性和多样性,其主要挑战在于 IM 算法的评估。现有的评估方法主要利用影响力传播等统计指标来量化整体性能,但不能完全揭示传播特征和模式。在本文中,我们提出了一个探索性的可视化分析系统--IMVis,以帮助用户从概览、模式和节点三个层面探索和评估 IM 算法。我们首先提出了一种传播模式挖掘方法,以描述传播过程并提取重要的传播模式,从而促进对 IM 算法的有效分析和比较。设计了新颖的可视化字形,以全面揭示 IM 算法在多层次超图中传播过程的时间和结构特征。通过两个案例研究和专家访谈,证明了 IMVis 的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMVis: Visual analytics for influence maximization algorithm evaluation in hypergraphs

Influence maximization (IM) algorithms play a significant role in hypergraph analysis tasks, such as epidemic control analysis, viral marketing, and social influence analysis, and various IM algorithms have been proposed. The main challenge lies in IM algorithm evaluation, due to the complexity and diversity of the spreading processes of different IM algorithms in different hypergraphs. Existing evaluation methods mainly leverage statistical metrics, such as influence spread, to quantify overall performance, but do not fully unravel spreading characteristics and patterns. In this paper, we propose an exploratory visual analytics system, IMVis, to assist users in exploring and evaluating IM algorithms at the overview, pattern, and node levels. A spreading pattern mining method is first proposed to characterize spreading processes and extract important spreading patterns to facilitate efficient analysis and comparison of IM algorithms. Novel visualization glyphs are designed to comprehensively reveal both temporal and structural features of IM algorithms’ spreading processes in hypergraphs at multiple levels. The effectiveness and usefulness of IMVis are demonstrated through two case studies and expert interviews.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信