利用强化学习的过渡相似性测量方法选择新特征

Younes Bouchlaghem , Yassine Akhiat , Kaouthar Touchanti , Souad Amjad
{"title":"利用强化学习的过渡相似性测量方法选择新特征","authors":"Younes Bouchlaghem ,&nbsp;Yassine Akhiat ,&nbsp;Kaouthar Touchanti ,&nbsp;Souad Amjad","doi":"10.1016/j.dajour.2024.100477","DOIUrl":null,"url":null,"abstract":"<div><p>Feature selection identifies the relevant features and removes the irrelevant and redundant ones, intending to obtain the best-performing feature subset. This paper proposes a new feedback feature selection system with a reinforcement learning-based method to identify the best feature subset. The proposed system mainly includes three parts. First, decision tree branches are used to traverse the state space to discover new rules and select the best feature subset. Second, a transition similarity measure is introduced to ensure that the system keeps exploring the state space by creating diverse branches to overcome the redundancy problem. Finally, the informative features are the most involved in constructing the best branches. The performance of the proposed approaches is evaluated on nine standard benchmark datasets. The results in terms of AUC score, accuracy, and running time demonstrate the effectiveness of the proposed system, as it selects the fewest number of relevant features in less computational time.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"11 ","pages":"Article 100477"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277266222400081X/pdfft?md5=6894016745c552e9790e4b39f4193a03&pid=1-s2.0-S277266222400081X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel feature selection method with transition similarity measure using reinforcement learning\",\"authors\":\"Younes Bouchlaghem ,&nbsp;Yassine Akhiat ,&nbsp;Kaouthar Touchanti ,&nbsp;Souad Amjad\",\"doi\":\"10.1016/j.dajour.2024.100477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature selection identifies the relevant features and removes the irrelevant and redundant ones, intending to obtain the best-performing feature subset. This paper proposes a new feedback feature selection system with a reinforcement learning-based method to identify the best feature subset. The proposed system mainly includes three parts. First, decision tree branches are used to traverse the state space to discover new rules and select the best feature subset. Second, a transition similarity measure is introduced to ensure that the system keeps exploring the state space by creating diverse branches to overcome the redundancy problem. Finally, the informative features are the most involved in constructing the best branches. The performance of the proposed approaches is evaluated on nine standard benchmark datasets. The results in terms of AUC score, accuracy, and running time demonstrate the effectiveness of the proposed system, as it selects the fewest number of relevant features in less computational time.</p></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"11 \",\"pages\":\"Article 100477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277266222400081X/pdfft?md5=6894016745c552e9790e4b39f4193a03&pid=1-s2.0-S277266222400081X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277266222400081X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277266222400081X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征选择可以识别相关特征并去除无关和冗余特征,从而获得性能最佳的特征子集。本文提出了一种新的反馈特征选择系统,采用基于强化学习的方法来识别最佳特征子集。该系统主要包括三个部分。首先,利用决策树分支遍历状态空间,发现新规则并选择最佳特征子集。其次,引入过渡相似度量,通过创建不同的分支来克服冗余问题,确保系统不断探索状态空间。最后,在构建最佳分支时,信息特征的参与度最高。我们在九个标准基准数据集上对所提出方法的性能进行了评估。在 AUC 分数、准确率和运行时间方面的结果证明了所提系统的有效性,因为它能在较少的计算时间内选择最少的相关特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel feature selection method with transition similarity measure using reinforcement learning

Feature selection identifies the relevant features and removes the irrelevant and redundant ones, intending to obtain the best-performing feature subset. This paper proposes a new feedback feature selection system with a reinforcement learning-based method to identify the best feature subset. The proposed system mainly includes three parts. First, decision tree branches are used to traverse the state space to discover new rules and select the best feature subset. Second, a transition similarity measure is introduced to ensure that the system keeps exploring the state space by creating diverse branches to overcome the redundancy problem. Finally, the informative features are the most involved in constructing the best branches. The performance of the proposed approaches is evaluated on nine standard benchmark datasets. The results in terms of AUC score, accuracy, and running time demonstrate the effectiveness of the proposed system, as it selects the fewest number of relevant features in less computational time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信