{"title":"硅晶片抛光过程中边缘形状的变化:卷边和卷起的形成","authors":"","doi":"10.1016/j.cirp.2024.04.032","DOIUrl":null,"url":null,"abstract":"<div><p>The edge shape of a silicon wafer is crucial for optimal device manufacturing. In polishing processes, it is necessary to form wafers into either a flat or roll-up shape, depending on the specific requirements of the process. However, the conventional process typically results in a roll-off shape. This study identifies the factors that influence a change in the edge shape during polishing. Polishing experiments were conducted to examine the effects of the initial edge shape and contact state between the wafer and polishing pad on the removal distribution. An approach for adjusting the resulting edge shapes was proposed.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 273-276"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in edge shape during silicon wafer polishing: Roll-off and roll-up formation\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The edge shape of a silicon wafer is crucial for optimal device manufacturing. In polishing processes, it is necessary to form wafers into either a flat or roll-up shape, depending on the specific requirements of the process. However, the conventional process typically results in a roll-off shape. This study identifies the factors that influence a change in the edge shape during polishing. Polishing experiments were conducted to examine the effects of the initial edge shape and contact state between the wafer and polishing pad on the removal distribution. An approach for adjusting the resulting edge shapes was proposed.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 273-276\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000477\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Changes in edge shape during silicon wafer polishing: Roll-off and roll-up formation
The edge shape of a silicon wafer is crucial for optimal device manufacturing. In polishing processes, it is necessary to form wafers into either a flat or roll-up shape, depending on the specific requirements of the process. However, the conventional process typically results in a roll-off shape. This study identifies the factors that influence a change in the edge shape during polishing. Polishing experiments were conducted to examine the effects of the initial edge shape and contact state between the wafer and polishing pad on the removal distribution. An approach for adjusting the resulting edge shapes was proposed.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.