线粒体伴侣密码刚刚热身

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
R. Felipe Perez , Gianna Mochi , Ariba Khan , Mark Woodford
{"title":"线粒体伴侣密码刚刚热身","authors":"R. Felipe Perez ,&nbsp;Gianna Mochi ,&nbsp;Ariba Khan ,&nbsp;Mark Woodford","doi":"10.1016/j.cstres.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>More than 99% of the mitochondrial proteome is encoded by the nucleus and requires refolding following import. Therefore, mitochondrial proteins require the coordinated action of molecular chaperones for their folding and activation. Several heat shock protein (Hsp) molecular chaperones, including members of the Hsp27, Hsp40/70, and Hsp90 families, as well as the chaperonin complex Hsp60/10 have an established role in mitochondrial protein import and folding. The “Chaperone Code” describes the regulation of chaperone activity by dynamic post-translational modifications; however, little is known about the post-translational regulation of mitochondrial chaperones. Dissecting the regulation of chaperone function is essential for understanding their differential regulation in pathogenic conditions and the potential development of efficacious therapeutic strategies. Here, we summarize the recent literature on post-translational regulation of mitochondrial chaperones, the consequences for mitochondrial function, and potential implications for disease.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 483-496"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000749/pdfft?md5=cabf429f9e7da88a1b10fe4fb854cd6b&pid=1-s2.0-S1355814524000749-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial Chaperone Code: Just warming up\",\"authors\":\"R. Felipe Perez ,&nbsp;Gianna Mochi ,&nbsp;Ariba Khan ,&nbsp;Mark Woodford\",\"doi\":\"10.1016/j.cstres.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>More than 99% of the mitochondrial proteome is encoded by the nucleus and requires refolding following import. Therefore, mitochondrial proteins require the coordinated action of molecular chaperones for their folding and activation. Several heat shock protein (Hsp) molecular chaperones, including members of the Hsp27, Hsp40/70, and Hsp90 families, as well as the chaperonin complex Hsp60/10 have an established role in mitochondrial protein import and folding. The “Chaperone Code” describes the regulation of chaperone activity by dynamic post-translational modifications; however, little is known about the post-translational regulation of mitochondrial chaperones. Dissecting the regulation of chaperone function is essential for understanding their differential regulation in pathogenic conditions and the potential development of efficacious therapeutic strategies. Here, we summarize the recent literature on post-translational regulation of mitochondrial chaperones, the consequences for mitochondrial function, and potential implications for disease.</p></div>\",\"PeriodicalId\":9684,\"journal\":{\"name\":\"Cell Stress & Chaperones\",\"volume\":\"29 3\",\"pages\":\"Pages 483-496\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000749/pdfft?md5=cabf429f9e7da88a1b10fe4fb854cd6b&pid=1-s2.0-S1355814524000749-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress & Chaperones\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000749\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524000749","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体蛋白质组的 99% 以上由细胞核编码,导入后需要重新折叠。因此,线粒体蛋白质的折叠和激活需要分子伴侣的协调作用。几种热休克蛋白(Hsp)分子伴侣,包括 Hsp27、Hsp40/70 和 Hsp90 家族的成员,以及伴侣素复合体 Hsp60/10 在线粒体蛋白质的导入和折叠中发挥着既定的作用。伴侣蛋白密码 "描述了通过动态翻译后修饰对伴侣蛋白活性的调控;然而,人们对线粒体伴侣蛋白的翻译后调控知之甚少。剖析伴侣功能的调控对于了解其在致病条件下的不同调控以及潜在的有效治疗策略的开发至关重要。在此,我们总结了有关线粒体伴侣翻译后调控、对线粒体功能的影响以及对疾病的潜在影响的最新文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitochondrial Chaperone Code: Just warming up

More than 99% of the mitochondrial proteome is encoded by the nucleus and requires refolding following import. Therefore, mitochondrial proteins require the coordinated action of molecular chaperones for their folding and activation. Several heat shock protein (Hsp) molecular chaperones, including members of the Hsp27, Hsp40/70, and Hsp90 families, as well as the chaperonin complex Hsp60/10 have an established role in mitochondrial protein import and folding. The “Chaperone Code” describes the regulation of chaperone activity by dynamic post-translational modifications; however, little is known about the post-translational regulation of mitochondrial chaperones. Dissecting the regulation of chaperone function is essential for understanding their differential regulation in pathogenic conditions and the potential development of efficacious therapeutic strategies. Here, we summarize the recent literature on post-translational regulation of mitochondrial chaperones, the consequences for mitochondrial function, and potential implications for disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信