基于机器学习的虚拟传感器可降低无霜冰箱的能耗

Alejandro Alcaraz, Dennis Ilare, Alessandro Mansutti, Gaetano Cascini
{"title":"基于机器学习的虚拟传感器可降低无霜冰箱的能耗","authors":"Alejandro Alcaraz, Dennis Ilare, Alessandro Mansutti, Gaetano Cascini","doi":"10.1017/pds.2024.193","DOIUrl":null,"url":null,"abstract":"This study explores Machine Learning (ML) integration for household refrigerator efficiency. The ML approach allows to optimize defrost cycles, offering energy savings without complexity or cost escalation. The paper initially presents a State-of-the-Art of ML potential to improve functionality and efficiency of refrigerators. Since frost is the cause of significant energy losses, a ML-based Virtual Sensor was developed to predict frost formation on the evaporator also in low -level refrigerators. The results show the environmental significance of ML in enhancing appliance efficiency.","PeriodicalId":489438,"journal":{"name":"Proceedings of the Design Society","volume":"17 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based virtual sensors for reduced energy consumption in frost-free refrigerators\",\"authors\":\"Alejandro Alcaraz, Dennis Ilare, Alessandro Mansutti, Gaetano Cascini\",\"doi\":\"10.1017/pds.2024.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores Machine Learning (ML) integration for household refrigerator efficiency. The ML approach allows to optimize defrost cycles, offering energy savings without complexity or cost escalation. The paper initially presents a State-of-the-Art of ML potential to improve functionality and efficiency of refrigerators. Since frost is the cause of significant energy losses, a ML-based Virtual Sensor was developed to predict frost formation on the evaporator also in low -level refrigerators. The results show the environmental significance of ML in enhancing appliance efficiency.\",\"PeriodicalId\":489438,\"journal\":{\"name\":\"Proceedings of the Design Society\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Design Society\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1017/pds.2024.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Design Society","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1017/pds.2024.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了机器学习(ML)与家用冰箱效率的结合。ML 方法可以优化除霜周期,在不增加复杂性和成本的情况下节约能源。本文首先介绍了 ML 在提高冰箱功能和效率方面的潜力。由于霜是造成大量能源损失的原因,因此开发了一种基于 ML 的虚拟传感器,用于预测低层冰箱蒸发器上霜的形成。结果表明,ML 在提高设备效率方面具有重要的环保意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based virtual sensors for reduced energy consumption in frost-free refrigerators
This study explores Machine Learning (ML) integration for household refrigerator efficiency. The ML approach allows to optimize defrost cycles, offering energy savings without complexity or cost escalation. The paper initially presents a State-of-the-Art of ML potential to improve functionality and efficiency of refrigerators. Since frost is the cause of significant energy losses, a ML-based Virtual Sensor was developed to predict frost formation on the evaporator also in low -level refrigerators. The results show the environmental significance of ML in enhancing appliance efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信