{"title":"密度梯度-RRT:用于无人机路径规划的改进型快速探索随机树算法","authors":"Tai Huang , Kuangang Fan , Wen Sun","doi":"10.1016/j.eswa.2024.124121","DOIUrl":null,"url":null,"abstract":"<div><p>In-depth studies of algorithms for solving motion planning problems have been conducted due to the rapid popularization and development of unmanned aerial vehicles in previous decades. Among them, the classic rapidly exploring random tree (RRT) algorithm has derivative algorithms (e.g., RRT*, Q-RRT*, and F-RRT*) that focus on the optimal path cost of the initial solution. Other improved algorithms, such as RRT-connect and BG-RRT, focus on the optimal time of the initial solution. This article proposes an improved density gradient-RRT (DG-RRT) algorithm based on RRT that improves the efficiency of the guide point and reduces the time lost in the process of obtaining the initial solution through the dynamic gradient sampling strategy. Simultaneously, it reduces the path cost by reconstructing the output path. The proposed algorithm is an expansion algorithm of a random tree, and the performance of the algorithm can be further improved by combining it with other RRT optimization algorithms. DG-RRT and other algorithms are compared in different environments through simulation experiments to verify the advantages of DG-RRT. In addition, it used a set of simulation flight tests to verify the feasibility of the DG-RRT algorithm for UAV path planning.</p></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"252 ","pages":"Article 124121"},"PeriodicalIF":7.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density gradient-RRT: An improved rapidly exploring random tree algorithm for UAV path planning\",\"authors\":\"Tai Huang , Kuangang Fan , Wen Sun\",\"doi\":\"10.1016/j.eswa.2024.124121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In-depth studies of algorithms for solving motion planning problems have been conducted due to the rapid popularization and development of unmanned aerial vehicles in previous decades. Among them, the classic rapidly exploring random tree (RRT) algorithm has derivative algorithms (e.g., RRT*, Q-RRT*, and F-RRT*) that focus on the optimal path cost of the initial solution. Other improved algorithms, such as RRT-connect and BG-RRT, focus on the optimal time of the initial solution. This article proposes an improved density gradient-RRT (DG-RRT) algorithm based on RRT that improves the efficiency of the guide point and reduces the time lost in the process of obtaining the initial solution through the dynamic gradient sampling strategy. Simultaneously, it reduces the path cost by reconstructing the output path. The proposed algorithm is an expansion algorithm of a random tree, and the performance of the algorithm can be further improved by combining it with other RRT optimization algorithms. DG-RRT and other algorithms are compared in different environments through simulation experiments to verify the advantages of DG-RRT. In addition, it used a set of simulation flight tests to verify the feasibility of the DG-RRT algorithm for UAV path planning.</p></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"252 \",\"pages\":\"Article 124121\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424009874\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424009874","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Density gradient-RRT: An improved rapidly exploring random tree algorithm for UAV path planning
In-depth studies of algorithms for solving motion planning problems have been conducted due to the rapid popularization and development of unmanned aerial vehicles in previous decades. Among them, the classic rapidly exploring random tree (RRT) algorithm has derivative algorithms (e.g., RRT*, Q-RRT*, and F-RRT*) that focus on the optimal path cost of the initial solution. Other improved algorithms, such as RRT-connect and BG-RRT, focus on the optimal time of the initial solution. This article proposes an improved density gradient-RRT (DG-RRT) algorithm based on RRT that improves the efficiency of the guide point and reduces the time lost in the process of obtaining the initial solution through the dynamic gradient sampling strategy. Simultaneously, it reduces the path cost by reconstructing the output path. The proposed algorithm is an expansion algorithm of a random tree, and the performance of the algorithm can be further improved by combining it with other RRT optimization algorithms. DG-RRT and other algorithms are compared in different environments through simulation experiments to verify the advantages of DG-RRT. In addition, it used a set of simulation flight tests to verify the feasibility of the DG-RRT algorithm for UAV path planning.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.