基于花键扫描的增材制造生成设计方法

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
{"title":"基于花键扫描的增材制造生成设计方法","authors":"","doi":"10.1016/j.cirp.2024.04.025","DOIUrl":null,"url":null,"abstract":"<div><p>While additive manufacturing (AM) provides design flexibility, challenges persist in handling intricate freeform shapes, especially those laden with fine details. Conventional AM processes, such as slicing stereolithography (STL) format models, generating line segment toolpaths, and polyline-based printing, prove costly and compromise accuracy. This paper proposes a solution: the spline scanning generative design method. Utilizing spline patterns to construct smooth toolpaths directly, it enables seamless curved printing, significantly reducing computational expenses while maintaining high accuracy through spline control points. Experimental implementation, supported by dedicated algorithms, attests to its efficacy, emphasizing its potential for intricate freeform structure design and printing.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 93-96"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000337/pdfft?md5=feb3222e2d804ee695902182339c2757&pid=1-s2.0-S0007850624000337-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A generative design method based on spline scanning for additive manufacturing\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While additive manufacturing (AM) provides design flexibility, challenges persist in handling intricate freeform shapes, especially those laden with fine details. Conventional AM processes, such as slicing stereolithography (STL) format models, generating line segment toolpaths, and polyline-based printing, prove costly and compromise accuracy. This paper proposes a solution: the spline scanning generative design method. Utilizing spline patterns to construct smooth toolpaths directly, it enables seamless curved printing, significantly reducing computational expenses while maintaining high accuracy through spline control points. Experimental implementation, supported by dedicated algorithms, attests to its efficacy, emphasizing its potential for intricate freeform structure design and printing.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 93-96\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000337/pdfft?md5=feb3222e2d804ee695902182339c2757&pid=1-s2.0-S0007850624000337-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000337\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000337","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然快速成型制造(AM)提供了设计的灵活性,但在处理复杂的自由形状,特别是那些带有精细细节的形状时,仍然存在挑战。传统的增材制造工艺,如立体光刻(STL)格式模型切片、生成线段工具路径和基于多段线的打印,不仅成本高昂,而且精度也大打折扣。本文提出了一种解决方案:花键扫描生成设计方法。该方法利用样条线直接构建平滑的工具路径,实现了无缝曲面打印,在通过样条线控制点保持高精度的同时,显著降低了计算成本。在专用算法的支持下进行的实验证明了这种方法的有效性,并强调了它在复杂的自由形态结构设计和打印方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generative design method based on spline scanning for additive manufacturing

While additive manufacturing (AM) provides design flexibility, challenges persist in handling intricate freeform shapes, especially those laden with fine details. Conventional AM processes, such as slicing stereolithography (STL) format models, generating line segment toolpaths, and polyline-based printing, prove costly and compromise accuracy. This paper proposes a solution: the spline scanning generative design method. Utilizing spline patterns to construct smooth toolpaths directly, it enables seamless curved printing, significantly reducing computational expenses while maintaining high accuracy through spline control points. Experimental implementation, supported by dedicated algorithms, attests to its efficacy, emphasizing its potential for intricate freeform structure design and printing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信