{"title":"当时间不够长时,水箱系统缺乏局部可控性","authors":"J. Coron, Armand Koenig, Hoai-Minh Nguyen","doi":"10.4171/aihpc/123","DOIUrl":null,"url":null,"abstract":"We consider the small-time local controllability property of a water tank modeled by 1 D Saint-Venant equations, where the control is the acceleration of the tank. It is known from the work of Dubois et al. that the linearized system is not controllable. Moreover, concerning the linearized system, they showed that a traveling time 𝑇 ∗ is necessary to bring the tank from one position to another for which the water is still at the beginning and at the end. Concerning the nonlinear system, Coron showed that local controllability around equilibrium states holds for a time large enough. In this paper, we show that for the local controllability of the nonlinear system around the equilibrium states, the necessary time is at least 2𝑇 ∗ even for the tank being still at the beginning and at the end. The key point of the proof is a coercivity property for the quadratic approximation of the water-tank system.","PeriodicalId":514444,"journal":{"name":"Annales de l'Institut Henri Poincaré C, Analyse non linéaire","volume":"24 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lack of local controllability for a water-tank system when the time is not large enough\",\"authors\":\"J. Coron, Armand Koenig, Hoai-Minh Nguyen\",\"doi\":\"10.4171/aihpc/123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the small-time local controllability property of a water tank modeled by 1 D Saint-Venant equations, where the control is the acceleration of the tank. It is known from the work of Dubois et al. that the linearized system is not controllable. Moreover, concerning the linearized system, they showed that a traveling time 𝑇 ∗ is necessary to bring the tank from one position to another for which the water is still at the beginning and at the end. Concerning the nonlinear system, Coron showed that local controllability around equilibrium states holds for a time large enough. In this paper, we show that for the local controllability of the nonlinear system around the equilibrium states, the necessary time is at least 2𝑇 ∗ even for the tank being still at the beginning and at the end. The key point of the proof is a coercivity property for the quadratic approximation of the water-tank system.\",\"PeriodicalId\":514444,\"journal\":{\"name\":\"Annales de l'Institut Henri Poincaré C, Analyse non linéaire\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l'Institut Henri Poincaré C, Analyse non linéaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l'Institut Henri Poincaré C, Analyse non linéaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpc/123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lack of local controllability for a water-tank system when the time is not large enough
We consider the small-time local controllability property of a water tank modeled by 1 D Saint-Venant equations, where the control is the acceleration of the tank. It is known from the work of Dubois et al. that the linearized system is not controllable. Moreover, concerning the linearized system, they showed that a traveling time 𝑇 ∗ is necessary to bring the tank from one position to another for which the water is still at the beginning and at the end. Concerning the nonlinear system, Coron showed that local controllability around equilibrium states holds for a time large enough. In this paper, we show that for the local controllability of the nonlinear system around the equilibrium states, the necessary time is at least 2𝑇 ∗ even for the tank being still at the beginning and at the end. The key point of the proof is a coercivity property for the quadratic approximation of the water-tank system.