浆状燃料移动液滴的表面变形

Geniy Kuznetsov, Pavel Strizhak, Roman Volkov, O. Vysokomornaya
{"title":"浆状燃料移动液滴的表面变形","authors":"Geniy Kuznetsov, Pavel Strizhak, Roman Volkov, O. Vysokomornaya","doi":"10.1063/5.0199877","DOIUrl":null,"url":null,"abstract":"Experimental research findings are reported on the characteristics of surface transformation of droplets of promising fuel slurries in the air, as they move at subsonic velocities typical of combustion chambers of power plants. The main components of the fuels were water, coal processing waste, and coal. Typical shapes of droplets and the duration of their deformation cycles were identified. Droplets containing more than 70% of the solid phase remained practically undeformed. The lowest relative velocities of droplets leading to their fragmentation were determined. The key characteristics of secondary droplets (their number, sizes, velocities, and surface area of liquid) were calculated on the basis of the experimental findings. These characteristics were compared with those of initial droplets. Disruption conditions in the chosen range of the gas jet pressure (P ≤ 6 bars) can only be provided for fuel slurry droplets containing less than 60% of a coal component. The effect of a group of factors on deformation characteristics was identified. These include air jet and droplet velocities, droplet sizes, temperature, concentration, and type of components and additives. Approximation equations were derived for the mathematical description of the experimental data. Using certain criteria, the conditions necessary and sufficient for the disruption of water–fuel slurries on impact with an air jet were estimated.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface deformation of moving droplets of slurry fuels\",\"authors\":\"Geniy Kuznetsov, Pavel Strizhak, Roman Volkov, O. Vysokomornaya\",\"doi\":\"10.1063/5.0199877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental research findings are reported on the characteristics of surface transformation of droplets of promising fuel slurries in the air, as they move at subsonic velocities typical of combustion chambers of power plants. The main components of the fuels were water, coal processing waste, and coal. Typical shapes of droplets and the duration of their deformation cycles were identified. Droplets containing more than 70% of the solid phase remained practically undeformed. The lowest relative velocities of droplets leading to their fragmentation were determined. The key characteristics of secondary droplets (their number, sizes, velocities, and surface area of liquid) were calculated on the basis of the experimental findings. These characteristics were compared with those of initial droplets. Disruption conditions in the chosen range of the gas jet pressure (P ≤ 6 bars) can only be provided for fuel slurry droplets containing less than 60% of a coal component. The effect of a group of factors on deformation characteristics was identified. These include air jet and droplet velocities, droplet sizes, temperature, concentration, and type of components and additives. Approximation equations were derived for the mathematical description of the experimental data. Using certain criteria, the conditions necessary and sufficient for the disruption of water–fuel slurries on impact with an air jet were estimated.\",\"PeriodicalId\":509470,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0199877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0199877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实验研究结果报告了有前途的燃料浆液液滴在空气中以发电厂燃烧室典型的亚音速运动时的表面变化特征。燃料的主要成分是水、煤加工废料和煤。确定了液滴的典型形状及其变形周期的持续时间。固相含量超过 70% 的液滴几乎没有变形。确定了导致液滴破碎的最低相对速度。根据实验结果计算出了二次液滴的主要特征(数量、大小、速度和液体表面积)。将这些特征与初始液滴的特征进行了比较。在选定的气体喷射压力范围内(P ≤ 6 巴),只有含煤成分小于 60% 的燃料浆液滴才能达到中断条件。确定了一组因素对变形特性的影响。这些因素包括空气喷射速度和液滴速度、液滴大小、温度、浓度以及成分和添加剂的类型。得出了用于实验数据数学描述的近似方程。利用某些标准估算了水燃料浆料在受到空气射流冲击时发生破坏的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface deformation of moving droplets of slurry fuels
Experimental research findings are reported on the characteristics of surface transformation of droplets of promising fuel slurries in the air, as they move at subsonic velocities typical of combustion chambers of power plants. The main components of the fuels were water, coal processing waste, and coal. Typical shapes of droplets and the duration of their deformation cycles were identified. Droplets containing more than 70% of the solid phase remained practically undeformed. The lowest relative velocities of droplets leading to their fragmentation were determined. The key characteristics of secondary droplets (their number, sizes, velocities, and surface area of liquid) were calculated on the basis of the experimental findings. These characteristics were compared with those of initial droplets. Disruption conditions in the chosen range of the gas jet pressure (P ≤ 6 bars) can only be provided for fuel slurry droplets containing less than 60% of a coal component. The effect of a group of factors on deformation characteristics was identified. These include air jet and droplet velocities, droplet sizes, temperature, concentration, and type of components and additives. Approximation equations were derived for the mathematical description of the experimental data. Using certain criteria, the conditions necessary and sufficient for the disruption of water–fuel slurries on impact with an air jet were estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信