Geniy Kuznetsov, Pavel Strizhak, Roman Volkov, O. Vysokomornaya
{"title":"浆状燃料移动液滴的表面变形","authors":"Geniy Kuznetsov, Pavel Strizhak, Roman Volkov, O. Vysokomornaya","doi":"10.1063/5.0199877","DOIUrl":null,"url":null,"abstract":"Experimental research findings are reported on the characteristics of surface transformation of droplets of promising fuel slurries in the air, as they move at subsonic velocities typical of combustion chambers of power plants. The main components of the fuels were water, coal processing waste, and coal. Typical shapes of droplets and the duration of their deformation cycles were identified. Droplets containing more than 70% of the solid phase remained practically undeformed. The lowest relative velocities of droplets leading to their fragmentation were determined. The key characteristics of secondary droplets (their number, sizes, velocities, and surface area of liquid) were calculated on the basis of the experimental findings. These characteristics were compared with those of initial droplets. Disruption conditions in the chosen range of the gas jet pressure (P ≤ 6 bars) can only be provided for fuel slurry droplets containing less than 60% of a coal component. The effect of a group of factors on deformation characteristics was identified. These include air jet and droplet velocities, droplet sizes, temperature, concentration, and type of components and additives. Approximation equations were derived for the mathematical description of the experimental data. Using certain criteria, the conditions necessary and sufficient for the disruption of water–fuel slurries on impact with an air jet were estimated.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface deformation of moving droplets of slurry fuels\",\"authors\":\"Geniy Kuznetsov, Pavel Strizhak, Roman Volkov, O. Vysokomornaya\",\"doi\":\"10.1063/5.0199877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental research findings are reported on the characteristics of surface transformation of droplets of promising fuel slurries in the air, as they move at subsonic velocities typical of combustion chambers of power plants. The main components of the fuels were water, coal processing waste, and coal. Typical shapes of droplets and the duration of their deformation cycles were identified. Droplets containing more than 70% of the solid phase remained practically undeformed. The lowest relative velocities of droplets leading to their fragmentation were determined. The key characteristics of secondary droplets (their number, sizes, velocities, and surface area of liquid) were calculated on the basis of the experimental findings. These characteristics were compared with those of initial droplets. Disruption conditions in the chosen range of the gas jet pressure (P ≤ 6 bars) can only be provided for fuel slurry droplets containing less than 60% of a coal component. The effect of a group of factors on deformation characteristics was identified. These include air jet and droplet velocities, droplet sizes, temperature, concentration, and type of components and additives. Approximation equations were derived for the mathematical description of the experimental data. Using certain criteria, the conditions necessary and sufficient for the disruption of water–fuel slurries on impact with an air jet were estimated.\",\"PeriodicalId\":509470,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0199877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0199877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface deformation of moving droplets of slurry fuels
Experimental research findings are reported on the characteristics of surface transformation of droplets of promising fuel slurries in the air, as they move at subsonic velocities typical of combustion chambers of power plants. The main components of the fuels were water, coal processing waste, and coal. Typical shapes of droplets and the duration of their deformation cycles were identified. Droplets containing more than 70% of the solid phase remained practically undeformed. The lowest relative velocities of droplets leading to their fragmentation were determined. The key characteristics of secondary droplets (their number, sizes, velocities, and surface area of liquid) were calculated on the basis of the experimental findings. These characteristics were compared with those of initial droplets. Disruption conditions in the chosen range of the gas jet pressure (P ≤ 6 bars) can only be provided for fuel slurry droplets containing less than 60% of a coal component. The effect of a group of factors on deformation characteristics was identified. These include air jet and droplet velocities, droplet sizes, temperature, concentration, and type of components and additives. Approximation equations were derived for the mathematical description of the experimental data. Using certain criteria, the conditions necessary and sufficient for the disruption of water–fuel slurries on impact with an air jet were estimated.