论黎曼-黎乌韦尔分微分方程在具有可变指数的勒贝格空间中的加权考奇型问题

Mokhtar Mokhtari, Ahmed Refice, M. S. Souid, A. Yakar
{"title":"论黎曼-黎乌韦尔分微分方程在具有可变指数的勒贝格空间中的加权考奇型问题","authors":"Mokhtar Mokhtari, Ahmed Refice, M. S. Souid, A. Yakar","doi":"10.32323/ujma.1409291","DOIUrl":null,"url":null,"abstract":"This paper aims to investigate the existence, uniqueness, and stability properties for a class of fractional weighted Cauchy-type problem in the variable exponent Lebesgue space $L^{p(.)}$. The obtained results are set up by employing generalized intervals and piece-wise constant functions so that the $L^{p(.)}$ is transformed into the classical Lebesgue spaces.\nMoreover, the usual Banach Contraction Principle is utilized, and the Ulam-Hyers (UH) stability is studied. At the final stage, we provide an example to support the accuracy of the obtained results.","PeriodicalId":509012,"journal":{"name":"Universal Journal of Mathematics and Applications","volume":"12 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent\",\"authors\":\"Mokhtar Mokhtari, Ahmed Refice, M. S. Souid, A. Yakar\",\"doi\":\"10.32323/ujma.1409291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to investigate the existence, uniqueness, and stability properties for a class of fractional weighted Cauchy-type problem in the variable exponent Lebesgue space $L^{p(.)}$. The obtained results are set up by employing generalized intervals and piece-wise constant functions so that the $L^{p(.)}$ is transformed into the classical Lebesgue spaces.\\nMoreover, the usual Banach Contraction Principle is utilized, and the Ulam-Hyers (UH) stability is studied. At the final stage, we provide an example to support the accuracy of the obtained results.\",\"PeriodicalId\":509012,\"journal\":{\"name\":\"Universal Journal of Mathematics and Applications\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32323/ujma.1409291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32323/ujma.1409291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究在可变指数 Lebesgue 空间 $L^{p(.)}$ 中一类分数加权 Cauchy 型问题的存在性、唯一性和稳定性。我们利用广义区间和片断常数函数将 $L^{p(.)}$ 转化为经典的 Lebesgue 空间,从而建立了所得到的结果。此外,我们还利用了通常的巴拿赫收缩原理,并研究了 Ulam-Hyers (UH) 稳定性。最后,我们提供了一个例子来证明所获结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent
This paper aims to investigate the existence, uniqueness, and stability properties for a class of fractional weighted Cauchy-type problem in the variable exponent Lebesgue space $L^{p(.)}$. The obtained results are set up by employing generalized intervals and piece-wise constant functions so that the $L^{p(.)}$ is transformed into the classical Lebesgue spaces. Moreover, the usual Banach Contraction Principle is utilized, and the Ulam-Hyers (UH) stability is studied. At the final stage, we provide an example to support the accuracy of the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信