非均质介质中的二维瞬态对比结构演变与平流

A. A. Bykov
{"title":"非均质介质中的二维瞬态对比结构演变与平流","authors":"A. A. Bykov","doi":"10.55959/msu0579-9392.79.2420101","DOIUrl":null,"url":null,"abstract":"The inner transition layer evolution for two-dimensional quasi-linear initial-boundary value problem for the\nreaction-advection-diffusion equation in an inhomogeneous media with a small parameter within the high order derivatives is considered. Within the framework of the main (zero order) sum of the asymptotic series,\nthe position of the inner transition layer is described by the Hamilton–Jacobi equation. The potential is\ncalculated as an integrated density function of the reaction sources within the limits of the equilibrium levels.\nThe front line of the transition layer evolves in the same way as the constant-eikonal line (the wavefront\nline in the other words) for the problem of wave propagation in an inhomogeneous medium in short-wave\n(geometro-optical) asymptotics. The sum of the asymptotic series of zero order and first order is found, the\nexistence gap of a smooth front line, the time of destruction of the contrasting structure are calculated.","PeriodicalId":399279,"journal":{"name":"Seriya 3: Fizika, Astronomiya","volume":"17 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional transient contrasting structure evolution in an inhomogeneous media with the advection\",\"authors\":\"A. A. Bykov\",\"doi\":\"10.55959/msu0579-9392.79.2420101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inner transition layer evolution for two-dimensional quasi-linear initial-boundary value problem for the\\nreaction-advection-diffusion equation in an inhomogeneous media with a small parameter within the high order derivatives is considered. Within the framework of the main (zero order) sum of the asymptotic series,\\nthe position of the inner transition layer is described by the Hamilton–Jacobi equation. The potential is\\ncalculated as an integrated density function of the reaction sources within the limits of the equilibrium levels.\\nThe front line of the transition layer evolves in the same way as the constant-eikonal line (the wavefront\\nline in the other words) for the problem of wave propagation in an inhomogeneous medium in short-wave\\n(geometro-optical) asymptotics. The sum of the asymptotic series of zero order and first order is found, the\\nexistence gap of a smooth front line, the time of destruction of the contrasting structure are calculated.\",\"PeriodicalId\":399279,\"journal\":{\"name\":\"Seriya 3: Fizika, Astronomiya\",\"volume\":\"17 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seriya 3: Fizika, Astronomiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55959/msu0579-9392.79.2420101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seriya 3: Fizika, Astronomiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55959/msu0579-9392.79.2420101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究考虑了在非均质介质中具有高阶导数内小参数的有作用-对流-扩散方程的二维准线性初界值问题的内过渡层演化。在渐近级数主(零阶)和的框架内,内部过渡层的位置由汉密尔顿-贾科比方程描述。过渡层前线的演化方式与短波(几何-光学)渐近学中不均匀介质中波传播问题的常数-埃克纳线(换句话说就是波前线)的演化方式相同。求出了零阶和一阶渐近级数之和,计算了光滑前线的存在间隙和对比结构的破坏时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional transient contrasting structure evolution in an inhomogeneous media with the advection
The inner transition layer evolution for two-dimensional quasi-linear initial-boundary value problem for the reaction-advection-diffusion equation in an inhomogeneous media with a small parameter within the high order derivatives is considered. Within the framework of the main (zero order) sum of the asymptotic series, the position of the inner transition layer is described by the Hamilton–Jacobi equation. The potential is calculated as an integrated density function of the reaction sources within the limits of the equilibrium levels. The front line of the transition layer evolves in the same way as the constant-eikonal line (the wavefront line in the other words) for the problem of wave propagation in an inhomogeneous medium in short-wave (geometro-optical) asymptotics. The sum of the asymptotic series of zero order and first order is found, the existence gap of a smooth front line, the time of destruction of the contrasting structure are calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信