通过有限数量的部分内部观测反向稳定重建异质麦克斯韦方程的 3 个系数

Michel Cristofol, Masahiro Yamamoto
{"title":"通过有限数量的部分内部观测反向稳定重建异质麦克斯韦方程的 3 个系数","authors":"Michel Cristofol, Masahiro Yamamoto","doi":"10.1088/1361-6420/ad473a","DOIUrl":null,"url":null,"abstract":"\n We consider an inverse problem of determining the isotropic inhomogeneous electromagnetic coefficients of the non-stationary Maxwell’s equations in a bounded domain of ℝ3 by means of a finite number of interior data of as less as possible components of the solutions. Our main result is a Lipschitz stability estimate for the inverse problem and our proof relies on a Carleman estimate for the heterogeneous Maxwell’s equations.","PeriodicalId":508687,"journal":{"name":"Inverse Problems","volume":"91 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse stable reconstruction of 3 coefficients for the heterogeneous Maxwell equations by finite number of partial interior observations\",\"authors\":\"Michel Cristofol, Masahiro Yamamoto\",\"doi\":\"10.1088/1361-6420/ad473a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We consider an inverse problem of determining the isotropic inhomogeneous electromagnetic coefficients of the non-stationary Maxwell’s equations in a bounded domain of ℝ3 by means of a finite number of interior data of as less as possible components of the solutions. Our main result is a Lipschitz stability estimate for the inverse problem and our proof relies on a Carleman estimate for the heterogeneous Maxwell’s equations.\",\"PeriodicalId\":508687,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad473a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad473a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个逆问题,即在ℝ3 的有界域中,通过尽可能少的解分量的有限数量的内部数据,确定非稳态麦克斯韦方程的各向同性非均质电磁系数。我们的主要结果是逆问题的 Lipschitz 稳定性估计,我们的证明依赖于异质麦克斯韦方程的 Carleman 估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse stable reconstruction of 3 coefficients for the heterogeneous Maxwell equations by finite number of partial interior observations
We consider an inverse problem of determining the isotropic inhomogeneous electromagnetic coefficients of the non-stationary Maxwell’s equations in a bounded domain of ℝ3 by means of a finite number of interior data of as less as possible components of the solutions. Our main result is a Lipschitz stability estimate for the inverse problem and our proof relies on a Carleman estimate for the heterogeneous Maxwell’s equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信