随机延迟微分方程概率密度的矩阵数值方法

Nils Antary, V. Holubec
{"title":"随机延迟微分方程概率密度的矩阵数值方法","authors":"Nils Antary, V. Holubec","doi":"10.1088/1751-8121/ad4752","DOIUrl":null,"url":null,"abstract":"\n Stochastic processes with time delay are invaluable for modeling in science and engineering when finite signal transmission and processing speeds can not be neglected. However, they can seldom be treated with sufficient precision analytically if the corresponding stochastic delay differential equations (SDDEs) are nonlinear. This work presents a numerical algorithm for calculating the probability densities of processes described by nonlinear SDDEs. The algorithm is based on Markovian embedding and solves the problem by basic matrix operations. We validate it for a broad class of parameters using exactly solvable linear SDDEs and a cubic SDDE. Besides, we show how to apply the algorithm to calculate transition rates and first passage times for a Brownian particle diffusing in a time-delayed cusp potential.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"23 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix numerical method for probability densities of stochastic delay differential equations\",\"authors\":\"Nils Antary, V. Holubec\",\"doi\":\"10.1088/1751-8121/ad4752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Stochastic processes with time delay are invaluable for modeling in science and engineering when finite signal transmission and processing speeds can not be neglected. However, they can seldom be treated with sufficient precision analytically if the corresponding stochastic delay differential equations (SDDEs) are nonlinear. This work presents a numerical algorithm for calculating the probability densities of processes described by nonlinear SDDEs. The algorithm is based on Markovian embedding and solves the problem by basic matrix operations. We validate it for a broad class of parameters using exactly solvable linear SDDEs and a cubic SDDE. Besides, we show how to apply the algorithm to calculate transition rates and first passage times for a Brownian particle diffusing in a time-delayed cusp potential.\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad4752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad4752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当有限的信号传输和处理速度不容忽视时,具有时间延迟的随机过程在科学和工程建模中就显得弥足珍贵。然而,如果相应的随机延迟微分方程(SDDE)是非线性的,则很少能以足够精确的分析方法处理它们。本研究提出了一种计算非线性 SDDE 所描述过程概率密度的数值算法。该算法基于马尔可夫嵌入,通过基本的矩阵运算来解决问题。我们使用可精确求解的线性 SDDE 和立方 SDDE 验证了该算法对大量参数的适用性。此外,我们还展示了如何应用该算法计算在延时尖顶势中扩散的布朗粒子的过渡率和首次通过时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix numerical method for probability densities of stochastic delay differential equations
Stochastic processes with time delay are invaluable for modeling in science and engineering when finite signal transmission and processing speeds can not be neglected. However, they can seldom be treated with sufficient precision analytically if the corresponding stochastic delay differential equations (SDDEs) are nonlinear. This work presents a numerical algorithm for calculating the probability densities of processes described by nonlinear SDDEs. The algorithm is based on Markovian embedding and solves the problem by basic matrix operations. We validate it for a broad class of parameters using exactly solvable linear SDDEs and a cubic SDDE. Besides, we show how to apply the algorithm to calculate transition rates and first passage times for a Brownian particle diffusing in a time-delayed cusp potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信