Charles-Édouard Bréhier, David Cohen, Johan Ulander
{"title":"一些半线性随机热方程的保正分裂方案分析","authors":"Charles-Édouard Bréhier, David Cohen, Johan Ulander","doi":"10.1051/m2an/2024032","DOIUrl":null,"url":null,"abstract":"We construct a positivity-preserving Lie--Trotter splitting scheme with finite difference discretization in space for approximating the solutions to a class of semilinear stochastic heat equations with multiplicative space-time white noise. We prove that this explicit numerical scheme converges in the mean-square sense, with rate $1/4$ in time and rate $1/2$ in space, under appropriate CFL conditions. Numerical experiments illustrate the superiority of the proposed numerical scheme compared with standard numerical methods which do not preserve positivity.\n\n\np, li { white-space: pre-wrap; }","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a positivity-preserving splitting scheme for some semilinear stochastic heat equations\",\"authors\":\"Charles-Édouard Bréhier, David Cohen, Johan Ulander\",\"doi\":\"10.1051/m2an/2024032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a positivity-preserving Lie--Trotter splitting scheme with finite difference discretization in space for approximating the solutions to a class of semilinear stochastic heat equations with multiplicative space-time white noise. We prove that this explicit numerical scheme converges in the mean-square sense, with rate $1/4$ in time and rate $1/2$ in space, under appropriate CFL conditions. Numerical experiments illustrate the superiority of the proposed numerical scheme compared with standard numerical methods which do not preserve positivity.\\n\\n\\np, li { white-space: pre-wrap; }\",\"PeriodicalId\":505020,\"journal\":{\"name\":\"ESAIM: Mathematical Modelling and Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM: Mathematical Modelling and Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2024032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of a positivity-preserving splitting scheme for some semilinear stochastic heat equations
We construct a positivity-preserving Lie--Trotter splitting scheme with finite difference discretization in space for approximating the solutions to a class of semilinear stochastic heat equations with multiplicative space-time white noise. We prove that this explicit numerical scheme converges in the mean-square sense, with rate $1/4$ in time and rate $1/2$ in space, under appropriate CFL conditions. Numerical experiments illustrate the superiority of the proposed numerical scheme compared with standard numerical methods which do not preserve positivity.
p, li { white-space: pre-wrap; }