Hussain Ahmad Madni, Rao Muhammad Umer, G. Foresti
{"title":"在多域联合学习中利用数据多样性","authors":"Hussain Ahmad Madni, Rao Muhammad Umer, G. Foresti","doi":"10.1088/2632-2153/ad4768","DOIUrl":null,"url":null,"abstract":"\n Federated Learning (FL) is an evolving machine learning technique that allows collaborative model training without sharing the original data among participants. In real-world scenarios, data residing at multiple clients are often heterogeneous in terms of different resolutions, magnifications, scanners, or imaging protocols, and thus challenging for global FL model convergence in collaborative training. Most of the existing FL methods consider data heterogeneity within one domain by assuming same data variation in each client site. In this paper, we consider data heterogeneity in FL with different domains of heterogeneous data by raising the problems of domain-shift, class-imbalance, and missing data. We propose a method, MDFL (Multi-Domain Federated Learning) as a solution to heterogeneous training data from multiple domains by training robust Transformer model. We use two loss functions, one for correctly predicting class labels and other for encouraging similarity and dissimilarity over latent features, to optimize the global FL model. We perform various experiments using different convolution-based networks and non-convolutional Transformer architectures on multi-domain datasets. We evaluate the proposed approach on benchmark datasets and compare with the existing FL methods. Our results show the superiority of the proposed approach which performs better in term of robust FL global model than the exiting methods.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"16 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Data Diversity in Multi-Domain Federated Learning\",\"authors\":\"Hussain Ahmad Madni, Rao Muhammad Umer, G. Foresti\",\"doi\":\"10.1088/2632-2153/ad4768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Federated Learning (FL) is an evolving machine learning technique that allows collaborative model training without sharing the original data among participants. In real-world scenarios, data residing at multiple clients are often heterogeneous in terms of different resolutions, magnifications, scanners, or imaging protocols, and thus challenging for global FL model convergence in collaborative training. Most of the existing FL methods consider data heterogeneity within one domain by assuming same data variation in each client site. In this paper, we consider data heterogeneity in FL with different domains of heterogeneous data by raising the problems of domain-shift, class-imbalance, and missing data. We propose a method, MDFL (Multi-Domain Federated Learning) as a solution to heterogeneous training data from multiple domains by training robust Transformer model. We use two loss functions, one for correctly predicting class labels and other for encouraging similarity and dissimilarity over latent features, to optimize the global FL model. We perform various experiments using different convolution-based networks and non-convolutional Transformer architectures on multi-domain datasets. We evaluate the proposed approach on benchmark datasets and compare with the existing FL methods. Our results show the superiority of the proposed approach which performs better in term of robust FL global model than the exiting methods.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad4768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Data Diversity in Multi-Domain Federated Learning
Federated Learning (FL) is an evolving machine learning technique that allows collaborative model training without sharing the original data among participants. In real-world scenarios, data residing at multiple clients are often heterogeneous in terms of different resolutions, magnifications, scanners, or imaging protocols, and thus challenging for global FL model convergence in collaborative training. Most of the existing FL methods consider data heterogeneity within one domain by assuming same data variation in each client site. In this paper, we consider data heterogeneity in FL with different domains of heterogeneous data by raising the problems of domain-shift, class-imbalance, and missing data. We propose a method, MDFL (Multi-Domain Federated Learning) as a solution to heterogeneous training data from multiple domains by training robust Transformer model. We use two loss functions, one for correctly predicting class labels and other for encouraging similarity and dissimilarity over latent features, to optimize the global FL model. We perform various experiments using different convolution-based networks and non-convolutional Transformer architectures on multi-domain datasets. We evaluate the proposed approach on benchmark datasets and compare with the existing FL methods. Our results show the superiority of the proposed approach which performs better in term of robust FL global model than the exiting methods.