分析并改进优酷视频推荐排名算法

Hemalatha M, Abineya K
{"title":"分析并改进优酷视频推荐排名算法","authors":"Hemalatha M, Abineya K","doi":"10.59256/ijire.20240503004","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving digital space, staying ahead is pivotal for video platforms. The dynamics of recommendation systems, responsible for curating a tailored experience for millions of users daily, become paramount in this pursuit. This study embarks on a comprehensive journey to dissect, simulate, and optimize the algorithms underpinning these recommendations. The proposed segments delve deeper into the specific objectives of this research endeavor. Analyzing YouTube's existing recommendation algorithms and leveraging a proposed model to create a user-friendly interface for the simulation of these algorithms. Testing and evaluating the efficacy of the enhanced algorithms against a benchmark dataset. The future of digital video platforms is intertwined with the evolution of recommended algorithm By enhancing the way platforms like YouTube recommend videos, this study aspires to contribute significantly to improving user experience and platform efficiency. Keyword: ranking algorithms; video recommendation; Analysis, efficiency","PeriodicalId":516932,"journal":{"name":"International Journal of Innovative Research in Engineering","volume":"71 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing and Enhancing You tube Ranking Algorithms for Video Recommendations\",\"authors\":\"Hemalatha M, Abineya K\",\"doi\":\"10.59256/ijire.20240503004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rapidly evolving digital space, staying ahead is pivotal for video platforms. The dynamics of recommendation systems, responsible for curating a tailored experience for millions of users daily, become paramount in this pursuit. This study embarks on a comprehensive journey to dissect, simulate, and optimize the algorithms underpinning these recommendations. The proposed segments delve deeper into the specific objectives of this research endeavor. Analyzing YouTube's existing recommendation algorithms and leveraging a proposed model to create a user-friendly interface for the simulation of these algorithms. Testing and evaluating the efficacy of the enhanced algorithms against a benchmark dataset. The future of digital video platforms is intertwined with the evolution of recommended algorithm By enhancing the way platforms like YouTube recommend videos, this study aspires to contribute significantly to improving user experience and platform efficiency. Keyword: ranking algorithms; video recommendation; Analysis, efficiency\",\"PeriodicalId\":516932,\"journal\":{\"name\":\"International Journal of Innovative Research in Engineering\",\"volume\":\"71 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Research in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59256/ijire.20240503004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59256/ijire.20240503004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的数字领域,保持领先地位对视频平台至关重要。推荐系统每天负责为数百万用户提供量身定制的体验,其动态变化在这一过程中变得至关重要。本研究对这些推荐系统的算法进行了全面的剖析、模拟和优化。本文提出的几个部分将深入探讨这项研究工作的具体目标。分析 YouTube 现有的推荐算法,并利用建议的模型创建一个用户友好界面,用于模拟这些算法。根据基准数据集测试和评估增强算法的功效。数字视频平台的未来与推荐算法的发展息息相关 通过改进 YouTube 等平台推荐视频的方式,本研究希望为改善用户体验和平台效率做出重大贡献。关键词:排名算法;视频推荐;分析;效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing and Enhancing You tube Ranking Algorithms for Video Recommendations
In the rapidly evolving digital space, staying ahead is pivotal for video platforms. The dynamics of recommendation systems, responsible for curating a tailored experience for millions of users daily, become paramount in this pursuit. This study embarks on a comprehensive journey to dissect, simulate, and optimize the algorithms underpinning these recommendations. The proposed segments delve deeper into the specific objectives of this research endeavor. Analyzing YouTube's existing recommendation algorithms and leveraging a proposed model to create a user-friendly interface for the simulation of these algorithms. Testing and evaluating the efficacy of the enhanced algorithms against a benchmark dataset. The future of digital video platforms is intertwined with the evolution of recommended algorithm By enhancing the way platforms like YouTube recommend videos, this study aspires to contribute significantly to improving user experience and platform efficiency. Keyword: ranking algorithms; video recommendation; Analysis, efficiency
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信