Mayra Alexandra Macas Carrasco, Chunming Wu, Walter Fuertes
{"title":"用于工业控制系统异常检测的基于注意力的深度生成模型","authors":"Mayra Alexandra Macas Carrasco, Chunming Wu, Walter Fuertes","doi":"10.5220/0012264000003584","DOIUrl":null,"url":null,"abstract":"Anomaly detection is critical for the secure and reliable operation of industrial control systems. As our reliance on such complex cyber-physical systems grows, it becomes paramount to have automated methods for detecting anomalies, preventing attacks, and responding intelligently. {This paper presents a novel deep generative model to meet this need. The proposed model follows a variational autoencoder architecture with a convolutional encoder and decoder to extract features from both spatial and temporal dimensions. Additionally, we incorporate an attention mechanism that directs focus towards specific regions, enhancing the representation of relevant features and improving anomaly detection accuracy. We also employ a dynamic threshold approach leveraging the reconstruction probability and make our source code publicly available to promote reproducibility and facilitate further research. Comprehensive experimental analysis is conducted on data from all six stages of the Secure Water Treatment (SWaT) testbed, and the experimental results demonstrate the superior performance of our approach compared to several state-of-the-art baseline techniques.","PeriodicalId":406179,"journal":{"name":"International Conference on Web Information Systems and Technologies","volume":"97 9","pages":"566-577"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems\",\"authors\":\"Mayra Alexandra Macas Carrasco, Chunming Wu, Walter Fuertes\",\"doi\":\"10.5220/0012264000003584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is critical for the secure and reliable operation of industrial control systems. As our reliance on such complex cyber-physical systems grows, it becomes paramount to have automated methods for detecting anomalies, preventing attacks, and responding intelligently. {This paper presents a novel deep generative model to meet this need. The proposed model follows a variational autoencoder architecture with a convolutional encoder and decoder to extract features from both spatial and temporal dimensions. Additionally, we incorporate an attention mechanism that directs focus towards specific regions, enhancing the representation of relevant features and improving anomaly detection accuracy. We also employ a dynamic threshold approach leveraging the reconstruction probability and make our source code publicly available to promote reproducibility and facilitate further research. Comprehensive experimental analysis is conducted on data from all six stages of the Secure Water Treatment (SWaT) testbed, and the experimental results demonstrate the superior performance of our approach compared to several state-of-the-art baseline techniques.\",\"PeriodicalId\":406179,\"journal\":{\"name\":\"International Conference on Web Information Systems and Technologies\",\"volume\":\"97 9\",\"pages\":\"566-577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Web Information Systems and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0012264000003584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web Information Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0012264000003584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems
Anomaly detection is critical for the secure and reliable operation of industrial control systems. As our reliance on such complex cyber-physical systems grows, it becomes paramount to have automated methods for detecting anomalies, preventing attacks, and responding intelligently. {This paper presents a novel deep generative model to meet this need. The proposed model follows a variational autoencoder architecture with a convolutional encoder and decoder to extract features from both spatial and temporal dimensions. Additionally, we incorporate an attention mechanism that directs focus towards specific regions, enhancing the representation of relevant features and improving anomaly detection accuracy. We also employ a dynamic threshold approach leveraging the reconstruction probability and make our source code publicly available to promote reproducibility and facilitate further research. Comprehensive experimental analysis is conducted on data from all six stages of the Secure Water Treatment (SWaT) testbed, and the experimental results demonstrate the superior performance of our approach compared to several state-of-the-art baseline techniques.