利用 SCATSAT-1 数据研究南极冰架表面融化的时空变化

Pooja Mishra, Naveen Tripathi, S. R. Oza, P. M. Solanki, N. Y. Bhatt
{"title":"利用 SCATSAT-1 数据研究南极冰架表面融化的时空变化","authors":"Pooja Mishra, Naveen Tripathi, S. R. Oza, P. M. Solanki, N. Y. Bhatt","doi":"10.32628/ijsrst24112165","DOIUrl":null,"url":null,"abstract":"Surface melting is a significant issue in Antarctica, affecting glacier movements and climate change. During summer, surface meltwaters from ponds circulate over ice shelves, causing mass loss. These melt water percolates down to shelf through crevasses and affects the iceshelf instability or break the ice shelf. Antarctica experiences a surface melting increase of around 3.5 million square kilometres for every one-degree rise in summer temperature. In this study we use remote-sensing data sets to assess the spatial and temporal distribution of surface melt over Antarctic ice shelves. We use microwave brightness temperature (Tb) to evaluate surface melting on ice shelves. Total four ice shelves from East and West Antarctica were selected for research due to their significant surface melting issues. The study estimated cumulative melt days over these ice shelves for year 2017 and 2018, and investigated melt variations over transect profiles. It was found that year 2018 showed increased amount in melt days in some regions of selected ice shelves.","PeriodicalId":14387,"journal":{"name":"International Journal of Scientific Research in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-Temporal Variations of Surface Melt Over Antarctic Ice Shelves using SCATSAT-1 Data\",\"authors\":\"Pooja Mishra, Naveen Tripathi, S. R. Oza, P. M. Solanki, N. Y. Bhatt\",\"doi\":\"10.32628/ijsrst24112165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface melting is a significant issue in Antarctica, affecting glacier movements and climate change. During summer, surface meltwaters from ponds circulate over ice shelves, causing mass loss. These melt water percolates down to shelf through crevasses and affects the iceshelf instability or break the ice shelf. Antarctica experiences a surface melting increase of around 3.5 million square kilometres for every one-degree rise in summer temperature. In this study we use remote-sensing data sets to assess the spatial and temporal distribution of surface melt over Antarctic ice shelves. We use microwave brightness temperature (Tb) to evaluate surface melting on ice shelves. Total four ice shelves from East and West Antarctica were selected for research due to their significant surface melting issues. The study estimated cumulative melt days over these ice shelves for year 2017 and 2018, and investigated melt variations over transect profiles. It was found that year 2018 showed increased amount in melt days in some regions of selected ice shelves.\",\"PeriodicalId\":14387,\"journal\":{\"name\":\"International Journal of Scientific Research in Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/ijsrst24112165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrst24112165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地表融化是南极洲的一个重要问题,会影响冰川运动和气候变化。夏季,来自池塘的地表融水在冰架上循环,造成大量流失。这些融水通过裂缝渗入冰架,影响冰架的不稳定性或使冰架断裂。夏季气温每升高一度,南极洲的地表融化面积就会增加约 350 万平方公里。在这项研究中,我们利用遥感数据集来评估南极冰架表面融化的时空分布。我们使用微波亮度温度(Tb)来评估冰架的表面融化情况。由于南极洲东部和西部共有四个冰架存在严重的表面融化问题,因此我们选择了这四个冰架进行研究。研究估算了这些冰架在 2017 年和 2018 年的累计融化天数,并调查了横断面上的融化变化。研究发现,2018 年选定冰架某些区域的融化天数有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Variations of Surface Melt Over Antarctic Ice Shelves using SCATSAT-1 Data
Surface melting is a significant issue in Antarctica, affecting glacier movements and climate change. During summer, surface meltwaters from ponds circulate over ice shelves, causing mass loss. These melt water percolates down to shelf through crevasses and affects the iceshelf instability or break the ice shelf. Antarctica experiences a surface melting increase of around 3.5 million square kilometres for every one-degree rise in summer temperature. In this study we use remote-sensing data sets to assess the spatial and temporal distribution of surface melt over Antarctic ice shelves. We use microwave brightness temperature (Tb) to evaluate surface melting on ice shelves. Total four ice shelves from East and West Antarctica were selected for research due to their significant surface melting issues. The study estimated cumulative melt days over these ice shelves for year 2017 and 2018, and investigated melt variations over transect profiles. It was found that year 2018 showed increased amount in melt days in some regions of selected ice shelves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信