空地一体化辅助主动窃听

IF 0.9 Q4 TELECOMMUNICATIONS
Xianming Wang, Heng Zhang, Yan Ren, Feiran Xu, Chenglong Gong
{"title":"空地一体化辅助主动窃听","authors":"Xianming Wang, Heng Zhang, Yan Ren, Feiran Xu, Chenglong Gong","doi":"10.1002/itl2.536","DOIUrl":null,"url":null,"abstract":"Benefiting from the rapid development of unmanned aerial vehicle (UAV) technology, UAVs have also received extensive attention in the field of communication. In this letter, we investigate an air‐ground proactive eavesdropping system in which a legitimate ground eavesdropper can actively eavesdrop on suspected ground communication links with the assistance of a UAV. To improve the eavesdropping performance of the system, the optimal trajectory of the UAV and the appropriate power allocation ratio are sought to maximize the eavesdropping rate. A Double‐Dueling DQN (D3QN) based scheme for maximizing the eavesdropping rate is proposed through deep reinforcement learning. The joint optimization of UAV trajectory and power allocation ratio is achieved using the D3QN algorithm. From the numerical results, the optimization scheme can improve the eavesdropping rate of the system.","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air‐ground integrated assisted proactive eavesdropping\",\"authors\":\"Xianming Wang, Heng Zhang, Yan Ren, Feiran Xu, Chenglong Gong\",\"doi\":\"10.1002/itl2.536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benefiting from the rapid development of unmanned aerial vehicle (UAV) technology, UAVs have also received extensive attention in the field of communication. In this letter, we investigate an air‐ground proactive eavesdropping system in which a legitimate ground eavesdropper can actively eavesdrop on suspected ground communication links with the assistance of a UAV. To improve the eavesdropping performance of the system, the optimal trajectory of the UAV and the appropriate power allocation ratio are sought to maximize the eavesdropping rate. A Double‐Dueling DQN (D3QN) based scheme for maximizing the eavesdropping rate is proposed through deep reinforcement learning. The joint optimization of UAV trajectory and power allocation ratio is achieved using the D3QN algorithm. From the numerical results, the optimization scheme can improve the eavesdropping rate of the system.\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1002/itl2.536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1002/itl2.536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

得益于无人机技术的飞速发展,无人机在通信领域也受到了广泛关注。在这封信中,我们研究了一种空地主动窃听系统,在该系统中,合法的地面窃听者可以在无人机的协助下主动窃听可疑的地面通信链路。为了提高该系统的窃听性能,我们寻求了无人机的最佳飞行轨迹和适当的功率分配比例,以最大限度地提高窃听率。通过深度强化学习,提出了一种基于双决斗 DQN(D3QN)的窃听率最大化方案。利用 D3QN 算法实现了无人机轨迹和功率分配比例的联合优化。从数值结果来看,该优化方案可以提高系统的窃听率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air‐ground integrated assisted proactive eavesdropping
Benefiting from the rapid development of unmanned aerial vehicle (UAV) technology, UAVs have also received extensive attention in the field of communication. In this letter, we investigate an air‐ground proactive eavesdropping system in which a legitimate ground eavesdropper can actively eavesdrop on suspected ground communication links with the assistance of a UAV. To improve the eavesdropping performance of the system, the optimal trajectory of the UAV and the appropriate power allocation ratio are sought to maximize the eavesdropping rate. A Double‐Dueling DQN (D3QN) based scheme for maximizing the eavesdropping rate is proposed through deep reinforcement learning. The joint optimization of UAV trajectory and power allocation ratio is achieved using the D3QN algorithm. From the numerical results, the optimization scheme can improve the eavesdropping rate of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信