使用 Cu Formate/Cu Particles 混合还原 Cu2O 在空气中进行热压烧结键合

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
W. Choi, Jong-Hyun Lee
{"title":"使用 Cu Formate/Cu Particles 混合还原 Cu2O 在空气中进行热压烧结键合","authors":"W. Choi, Jong-Hyun Lee","doi":"10.3365/kjmm.2024.62.5.360","DOIUrl":null,"url":null,"abstract":"A Cu-based paste containing Cu formate and Cu particles was prepared for the compressionassisted sinter-bonding of Cu-finished wide-bandgap power devices onto a Cu-finished substrate at a relatively low bonding temperature of 250 oC in air. A mixture of Cu formate and Cu particles was designed to mitigate the tremendous volume shrinkage during reduction of Cu formate, which approaches approximately 90%, and could be a significant obstacle in the formation of a high-density bond-line. The mixture was spontaneously formed during the 15-min reduction of the initial Cu2O particles by a simple wet process using formic acid. In the bonding, pure Cu generated in situ from the Cu formate at a temperature exceeding 200 °C exhibited significant sinterability, and the generated hydrogen reduced oxide layers on the Cu finishes. Furthermore, the mixed particles resulted in low volume shrinkage in the bond-line during bonding, compared to the use of Cu formate particles alone. Consequently, a robust die shear strength of 22.2 MPa was achieved by sinterbonding for even 10 min at low temperature and the compression of 10 MPa, even though Cu oxide shells were formed in the bond-line because of the long sintering in air. The simple wet process provided an efficient preparation of an effective filler system before the paste formulation for the sinter-bonding.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-Compression Sinter-Bonding in Air Using Cu Formate/Cu Particles Mixed During Reduction of Cu2O\",\"authors\":\"W. Choi, Jong-Hyun Lee\",\"doi\":\"10.3365/kjmm.2024.62.5.360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Cu-based paste containing Cu formate and Cu particles was prepared for the compressionassisted sinter-bonding of Cu-finished wide-bandgap power devices onto a Cu-finished substrate at a relatively low bonding temperature of 250 oC in air. A mixture of Cu formate and Cu particles was designed to mitigate the tremendous volume shrinkage during reduction of Cu formate, which approaches approximately 90%, and could be a significant obstacle in the formation of a high-density bond-line. The mixture was spontaneously formed during the 15-min reduction of the initial Cu2O particles by a simple wet process using formic acid. In the bonding, pure Cu generated in situ from the Cu formate at a temperature exceeding 200 °C exhibited significant sinterability, and the generated hydrogen reduced oxide layers on the Cu finishes. Furthermore, the mixed particles resulted in low volume shrinkage in the bond-line during bonding, compared to the use of Cu formate particles alone. Consequently, a robust die shear strength of 22.2 MPa was achieved by sinterbonding for even 10 min at low temperature and the compression of 10 MPa, even though Cu oxide shells were formed in the bond-line because of the long sintering in air. The simple wet process provided an efficient preparation of an effective filler system before the paste formulation for the sinter-bonding.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2024.62.5.360\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2024.62.5.360","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们制备了一种含有甲酸铜和铜颗粒的铜基浆料,用于在相对较低的 250 摄氏度空气粘合温度下将铜制宽带隙功率器件压制到铜制基板上。设计甲酸铜和铜颗粒的混合物是为了减轻甲酸铜在还原过程中产生的巨大体积收缩(约 90%),这种收缩可能成为形成高密度结合线的重大障碍。这种混合物是在使用甲酸的简单湿法工艺还原初始 Cu2O 粒子 15 分钟后自发形成的。在键合过程中,由甲酸铜在超过 200 °C 的温度下就地生成的纯铜具有显著的烧结性,生成的氢还原了铜表面的氧化层。此外,与单独使用甲酸铜颗粒相比,混合颗粒在键合过程中键合线的体积收缩较小。因此,尽管由于长时间在空气中烧结而在结合线上形成了氧化铜壳,但在低温下烧结结合 10 分钟和 10 兆帕的压力下,仍实现了 22.2 兆帕的强大模具剪切强度。简单的湿法工艺可在烧结粘结的浆料配方之前高效制备出有效的填料系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-Compression Sinter-Bonding in Air Using Cu Formate/Cu Particles Mixed During Reduction of Cu2O
A Cu-based paste containing Cu formate and Cu particles was prepared for the compressionassisted sinter-bonding of Cu-finished wide-bandgap power devices onto a Cu-finished substrate at a relatively low bonding temperature of 250 oC in air. A mixture of Cu formate and Cu particles was designed to mitigate the tremendous volume shrinkage during reduction of Cu formate, which approaches approximately 90%, and could be a significant obstacle in the formation of a high-density bond-line. The mixture was spontaneously formed during the 15-min reduction of the initial Cu2O particles by a simple wet process using formic acid. In the bonding, pure Cu generated in situ from the Cu formate at a temperature exceeding 200 °C exhibited significant sinterability, and the generated hydrogen reduced oxide layers on the Cu finishes. Furthermore, the mixed particles resulted in low volume shrinkage in the bond-line during bonding, compared to the use of Cu formate particles alone. Consequently, a robust die shear strength of 22.2 MPa was achieved by sinterbonding for even 10 min at low temperature and the compression of 10 MPa, even though Cu oxide shells were formed in the bond-line because of the long sintering in air. The simple wet process provided an efficient preparation of an effective filler system before the paste formulation for the sinter-bonding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信