利用有机材料图案化表面声波检测的创新型乙醇传感器

Mariya Aleksandrova
{"title":"利用有机材料图案化表面声波检测的创新型乙醇传感器","authors":"Mariya Aleksandrova","doi":"10.19080/ctbeb.2024.22.556096","DOIUrl":null,"url":null,"abstract":"In this paper, sensor based on surface acoustic waves for ethanol vapors detection, was fabricated and studied. For room temperature detection of the volatile compound, a novel carbyne nanofilm was deposited on the surface of a SAW transducer. The conventional electrodes were replaced by conductive polymeric coting of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) to minimize the microstructural and elemental difference between the electrode and gas sensitive material. The experimental results showed that the sensors had a good response to ethanol at room temperature. The maximum response of the sensors was at 600 ppm, where the time delay between the output and the input signals of the transducer was ~ 160 μs. The parasitic contact resistance and interface capacitance were found insufficient to affect the accuracy of the measurement, although their values are higher as compared to the sensors with metal electrodes.","PeriodicalId":396585,"journal":{"name":"Current Trends in Biomedical Engineering & Biosciences","volume":"44 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Ethanol Sensors Utilizing Organic Material Patterned Surface Acoustic Wave Detection\",\"authors\":\"Mariya Aleksandrova\",\"doi\":\"10.19080/ctbeb.2024.22.556096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, sensor based on surface acoustic waves for ethanol vapors detection, was fabricated and studied. For room temperature detection of the volatile compound, a novel carbyne nanofilm was deposited on the surface of a SAW transducer. The conventional electrodes were replaced by conductive polymeric coting of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) to minimize the microstructural and elemental difference between the electrode and gas sensitive material. The experimental results showed that the sensors had a good response to ethanol at room temperature. The maximum response of the sensors was at 600 ppm, where the time delay between the output and the input signals of the transducer was ~ 160 μs. The parasitic contact resistance and interface capacitance were found insufficient to affect the accuracy of the measurement, although their values are higher as compared to the sensors with metal electrodes.\",\"PeriodicalId\":396585,\"journal\":{\"name\":\"Current Trends in Biomedical Engineering & Biosciences\",\"volume\":\"44 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Trends in Biomedical Engineering & Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/ctbeb.2024.22.556096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Trends in Biomedical Engineering & Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/ctbeb.2024.22.556096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文制作并研究了基于表面声波的乙醇蒸汽检测传感器。为了在室温下检测挥发性化合物,在声表面波传感器的表面沉积了一层新型的卡宾纳米薄膜。传统电极被聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)导电聚合物涂层所取代,以尽量减少电极和气敏材料之间的微观结构和元素差异。实验结果表明,传感器在室温下对乙醇有良好的响应。传感器的最大响应为 600 ppm,此时传感器输出信号与输入信号之间的时间延迟约为 160 μs。虽然寄生接触电阻和界面电容的数值高于金属电极传感器,但它们不足以影响测量的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative Ethanol Sensors Utilizing Organic Material Patterned Surface Acoustic Wave Detection
In this paper, sensor based on surface acoustic waves for ethanol vapors detection, was fabricated and studied. For room temperature detection of the volatile compound, a novel carbyne nanofilm was deposited on the surface of a SAW transducer. The conventional electrodes were replaced by conductive polymeric coting of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) to minimize the microstructural and elemental difference between the electrode and gas sensitive material. The experimental results showed that the sensors had a good response to ethanol at room temperature. The maximum response of the sensors was at 600 ppm, where the time delay between the output and the input signals of the transducer was ~ 160 μs. The parasitic contact resistance and interface capacitance were found insufficient to affect the accuracy of the measurement, although their values are higher as compared to the sensors with metal electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信