{"title":"使用移位变量词典和 OMPAN 的行星齿轮箱分层故障诊断模型","authors":"Ronghua Chen, Yingkui Gu, Peng Huang, Junjie Chen, Guangqi Qiu","doi":"10.1115/1.4065442","DOIUrl":null,"url":null,"abstract":"\n Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with 3 sub-classifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by a planetary gearbox experiment. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":"49 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hierarchical Fault Diagnosis Model for Planetary Gearbox with Shift-invariant Dictionary and OMPAN\",\"authors\":\"Ronghua Chen, Yingkui Gu, Peng Huang, Junjie Chen, Guangqi Qiu\",\"doi\":\"10.1115/1.4065442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with 3 sub-classifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by a planetary gearbox experiment. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.\",\"PeriodicalId\":504755,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"volume\":\"49 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hierarchical Fault Diagnosis Model for Planetary Gearbox with Shift-invariant Dictionary and OMPAN
Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with 3 sub-classifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by a planetary gearbox experiment. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.