{"title":"罗宾不等式的 n/phi(n)","authors":"Jean-Louis Nicolas","doi":"10.53733/324","DOIUrl":null,"url":null,"abstract":"Let $\\varphi(n)$ be the Euler function, $\\sigma(n)=\\sum_{d\\mid n}d$ the sum of divisors function and $\\gamma=0.577\\ldots$ the Euler constant. In 1982, Robin proved that, under the Riemann hypothesis, $\\sigma(n)/n < e^\\gamma \\log\\log n$ holds for $n > 5040$ and that this inequality is equivalent to the Riemann hypothesis. The aim of this paper is to give a similar equivalence for $n/\\varphi(n)$.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"58 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robin inequality for n/phi(n)\",\"authors\":\"Jean-Louis Nicolas\",\"doi\":\"10.53733/324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\varphi(n)$ be the Euler function, $\\\\sigma(n)=\\\\sum_{d\\\\mid n}d$ the sum of divisors function and $\\\\gamma=0.577\\\\ldots$ the Euler constant. In 1982, Robin proved that, under the Riemann hypothesis, $\\\\sigma(n)/n < e^\\\\gamma \\\\log\\\\log n$ holds for $n > 5040$ and that this inequality is equivalent to the Riemann hypothesis. The aim of this paper is to give a similar equivalence for $n/\\\\varphi(n)$.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"58 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let $\varphi(n)$ be the Euler function, $\sigma(n)=\sum_{d\mid n}d$ the sum of divisors function and $\gamma=0.577\ldots$ the Euler constant. In 1982, Robin proved that, under the Riemann hypothesis, $\sigma(n)/n < e^\gamma \log\log n$ holds for $n > 5040$ and that this inequality is equivalent to the Riemann hypothesis. The aim of this paper is to give a similar equivalence for $n/\varphi(n)$.