利用 ESS 和实时定价分析聚合器智能充电中的电动汽车用户行为

Qeios Pub Date : 2024-05-06 DOI:10.32388/2sdpk4.2
Aakash Kumar, Draupathi Chin
{"title":"利用 ESS 和实时定价分析聚合器智能充电中的电动汽车用户行为","authors":"Aakash Kumar, Draupathi Chin","doi":"10.32388/2sdpk4.2","DOIUrl":null,"url":null,"abstract":"Amidst increasing global electricity consumption, governments prioritize energy efficiency and electric vehicle (EV) integration into energy markets. This study examines EV aggregator strategies employing smart charging methods, adjusting charging rates based on user preferences. Through simulations in Quito's distribution system, it analyzes actions' effects on aggregator costs and technical conditions, with a focus on demand response (DR) strategies, particularly in residential areas. Exploring EVs' potential as energy storage via vehicle-to-home (V2H) and vehicle-to-grid (V2G) options, the study introduces a collaborative evaluation of dynamic pricing and peak power limiting-based DR strategies, integrating bi-directional EV and energy storage system (ESS) use. It also proposes a novel mixed-integer linear programming (MILP) model for home energy management (HEM), incorporating distributed renewable energy, V2H/V2G capabilities, two-way ESS energy trading, and diverse DR strategies. This comprehensive approach assesses the impact of EV owner preferences and ESS availability on reducing total electricity costs through case studies.\n","PeriodicalId":500839,"journal":{"name":"Qeios","volume":"56 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing EV User Behavior in Aggregator Smart Charging with ESS and Real-Time Pricing\",\"authors\":\"Aakash Kumar, Draupathi Chin\",\"doi\":\"10.32388/2sdpk4.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amidst increasing global electricity consumption, governments prioritize energy efficiency and electric vehicle (EV) integration into energy markets. This study examines EV aggregator strategies employing smart charging methods, adjusting charging rates based on user preferences. Through simulations in Quito's distribution system, it analyzes actions' effects on aggregator costs and technical conditions, with a focus on demand response (DR) strategies, particularly in residential areas. Exploring EVs' potential as energy storage via vehicle-to-home (V2H) and vehicle-to-grid (V2G) options, the study introduces a collaborative evaluation of dynamic pricing and peak power limiting-based DR strategies, integrating bi-directional EV and energy storage system (ESS) use. It also proposes a novel mixed-integer linear programming (MILP) model for home energy management (HEM), incorporating distributed renewable energy, V2H/V2G capabilities, two-way ESS energy trading, and diverse DR strategies. This comprehensive approach assesses the impact of EV owner preferences and ESS availability on reducing total electricity costs through case studies.\\n\",\"PeriodicalId\":500839,\"journal\":{\"name\":\"Qeios\",\"volume\":\"56 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qeios\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.32388/2sdpk4.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qeios","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.32388/2sdpk4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全球用电量不断增加的情况下,各国政府将能源效率和电动汽车(EV)融入能源市场作为优先事项。本研究探讨了电动汽车聚合商采用智能充电方法的策略,即根据用户偏好调整充电费率。通过对基多配电系统的模拟,研究分析了这些行动对聚合器成本和技术条件的影响,重点关注需求响应(DR)策略,尤其是在住宅区。该研究探索了电动汽车通过车到户(V2H)和车到网(V2G)选择作为储能设备的潜力,引入了基于动态定价和峰值功率限制的需求响应策略的合作评估,整合了电动汽车和储能系统(ESS)的双向使用。研究还为家庭能源管理(HEM)提出了一个新颖的混合整数线性规划(MILP)模型,将分布式可再生能源、V2H/V2G 功能、双向 ESS 能源交易和多样化的 DR 策略结合在一起。这种综合方法通过案例研究评估了电动汽车车主偏好和ESS可用性对降低总电费的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing EV User Behavior in Aggregator Smart Charging with ESS and Real-Time Pricing
Amidst increasing global electricity consumption, governments prioritize energy efficiency and electric vehicle (EV) integration into energy markets. This study examines EV aggregator strategies employing smart charging methods, adjusting charging rates based on user preferences. Through simulations in Quito's distribution system, it analyzes actions' effects on aggregator costs and technical conditions, with a focus on demand response (DR) strategies, particularly in residential areas. Exploring EVs' potential as energy storage via vehicle-to-home (V2H) and vehicle-to-grid (V2G) options, the study introduces a collaborative evaluation of dynamic pricing and peak power limiting-based DR strategies, integrating bi-directional EV and energy storage system (ESS) use. It also proposes a novel mixed-integer linear programming (MILP) model for home energy management (HEM), incorporating distributed renewable energy, V2H/V2G capabilities, two-way ESS energy trading, and diverse DR strategies. This comprehensive approach assesses the impact of EV owner preferences and ESS availability on reducing total electricity costs through case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信