{"title":"麦克斯韦传输特征值问题混合有限元法的误差估计","authors":"Chao Wang, Jintao Cui, Jiguang Sun","doi":"10.1051/m2an/2024033","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze a numerical method combining the Ciarlet-Raviart mixed finite element formulation and an iterative algorithm for the Maxwell’s transmission eigenvalue problem. The eigenvalue problem is first written as a nonlinear quad-curl eigenvalue problem. Then the real transmission eigenvalues are proved to be the roots of a non-linear function. They are the generalized eigenvalues of a related linear self-adjoint quad-curl eigenvalue problem. These generalized eigenvalues are computed by a mixed finite element method. We derive the error estimates using the spectral approximation of compact operators, the theory of mixed finite element method for quad-curl problems, and the derivatives of eigenvalues.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates for a mixed finite element method for the Maxwell’s transmission eigenvalue problem\",\"authors\":\"Chao Wang, Jintao Cui, Jiguang Sun\",\"doi\":\"10.1051/m2an/2024033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze a numerical method combining the Ciarlet-Raviart mixed finite element formulation and an iterative algorithm for the Maxwell’s transmission eigenvalue problem. The eigenvalue problem is first written as a nonlinear quad-curl eigenvalue problem. Then the real transmission eigenvalues are proved to be the roots of a non-linear function. They are the generalized eigenvalues of a related linear self-adjoint quad-curl eigenvalue problem. These generalized eigenvalues are computed by a mixed finite element method. We derive the error estimates using the spectral approximation of compact operators, the theory of mixed finite element method for quad-curl problems, and the derivatives of eigenvalues.\",\"PeriodicalId\":505020,\"journal\":{\"name\":\"ESAIM: Mathematical Modelling and Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM: Mathematical Modelling and Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2024033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Error estimates for a mixed finite element method for the Maxwell’s transmission eigenvalue problem
In this paper, we analyze a numerical method combining the Ciarlet-Raviart mixed finite element formulation and an iterative algorithm for the Maxwell’s transmission eigenvalue problem. The eigenvalue problem is first written as a nonlinear quad-curl eigenvalue problem. Then the real transmission eigenvalues are proved to be the roots of a non-linear function. They are the generalized eigenvalues of a related linear self-adjoint quad-curl eigenvalue problem. These generalized eigenvalues are computed by a mixed finite element method. We derive the error estimates using the spectral approximation of compact operators, the theory of mixed finite element method for quad-curl problems, and the derivatives of eigenvalues.