持续地磁暴对地球外辐射带超相对论电子增强的影响

Jing Run Chen, Chaoling Tang, Xinxin Chu
{"title":"持续地磁暴对地球外辐射带超相对论电子增强的影响","authors":"Jing Run Chen, Chaoling Tang, Xinxin Chu","doi":"10.3389/fspas.2024.1381764","DOIUrl":null,"url":null,"abstract":"Ultrarelativistic electrons (Ek > 3 MeV) are the most energetic electrons in the Earth’s outer radiation belt, which can cause serious damage to equipments on satellites. The evolutions of ultrarelativistic electrons during geomagnetic storm have been well understood, but the effects of continuous geomagnetic storm on ultrarelativistic electrons are still unclear. Using the data of the Van Allen Probes, we study the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during the three continuous geomagnetic storm events. These continuous geomagnetic storm events include the two geomagnetic storms. During the recovery phase of the first geomagnetic storm, enhanced relativistic and ultrarelativistic electrons with lower energies (≥ 3.4 MeV) are observed. These enhanced relativistic electrons could be the source of ultrarelativistic electrons and contribute to ultrarelativistic electron acceleration during the second geomagnetic storm. While 3.4 MeV electrons could be further enhanced during the second geomagnetic storm. During the recovery phase of the second small or moderate geomagnetic storm, ultrarelativistic electrons with higher cutoff energies (≥ 5.2 MeV) and higher fluxes are observed. Compared to an isolated geomagnetic storm with similar solar wind and geomagnetic conditions, ultrarelativistic electrons with higher cutoff energies and higher fluxes are observed during the recovery phase of the second geomagnetic storm. We also find that continuous geomagnetic storm events may contribute even more to enhancements of ultrarelativistic electrons in the outer radiation belt if the second geomagnetic storm is a small or moderate storm with a low solar wind dynamic pressure and short-duration main phase. These can help us to further understand the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during geomagnetic storms.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"57 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of continuous geomagnetic storms on enhancements of ultrarelativistic electrons in the Earth’s outer radiation belt\",\"authors\":\"Jing Run Chen, Chaoling Tang, Xinxin Chu\",\"doi\":\"10.3389/fspas.2024.1381764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrarelativistic electrons (Ek > 3 MeV) are the most energetic electrons in the Earth’s outer radiation belt, which can cause serious damage to equipments on satellites. The evolutions of ultrarelativistic electrons during geomagnetic storm have been well understood, but the effects of continuous geomagnetic storm on ultrarelativistic electrons are still unclear. Using the data of the Van Allen Probes, we study the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during the three continuous geomagnetic storm events. These continuous geomagnetic storm events include the two geomagnetic storms. During the recovery phase of the first geomagnetic storm, enhanced relativistic and ultrarelativistic electrons with lower energies (≥ 3.4 MeV) are observed. These enhanced relativistic electrons could be the source of ultrarelativistic electrons and contribute to ultrarelativistic electron acceleration during the second geomagnetic storm. While 3.4 MeV electrons could be further enhanced during the second geomagnetic storm. During the recovery phase of the second small or moderate geomagnetic storm, ultrarelativistic electrons with higher cutoff energies (≥ 5.2 MeV) and higher fluxes are observed. Compared to an isolated geomagnetic storm with similar solar wind and geomagnetic conditions, ultrarelativistic electrons with higher cutoff energies and higher fluxes are observed during the recovery phase of the second geomagnetic storm. We also find that continuous geomagnetic storm events may contribute even more to enhancements of ultrarelativistic electrons in the outer radiation belt if the second geomagnetic storm is a small or moderate storm with a low solar wind dynamic pressure and short-duration main phase. These can help us to further understand the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during geomagnetic storms.\",\"PeriodicalId\":507437,\"journal\":{\"name\":\"Frontiers in Astronomy and Space Sciences\",\"volume\":\"57 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspas.2024.1381764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2024.1381764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超相对论电子(Ek > 3 MeV)是地球外辐射带中能量最高的电子,可对卫星设备造成严重损害。超相对论电子在地磁暴期间的演化已被很好地理解,但持续地磁暴对超相对论电子的影响仍不清楚。我们利用范艾伦探测器的数据,研究了三次连续地磁暴期间地球外辐射带中超相对论电子的演化过程。这些连续地磁暴事件包括两次地磁暴。在第一次地磁暴的恢复阶段,观测到能量较低(≥ 3.4 MeV)的增强相对论电子和超相对论电子。这些增强的相对论电子可能是超相对论电子的来源,并在第二次地磁暴期间促成了超相对论电子加速。而 3.4 MeV 电子可能在第二次地磁暴期间进一步增强。在第二次小型或中型地磁暴的恢复阶段,可以观测到截止能量较高(≥ 5.2 MeV)和通量较高的超相对论电子。与太阳风和地磁条件相似的孤立地磁暴相比,在第二次地磁暴的恢复阶段观测到的超相对论电子具有更高的截止能量和更高的通量。我们还发现,如果第二次地磁暴是太阳风动压较低、主阶段持续时间较短的小型或中型地磁暴,那么连续的地磁暴事件对外辐射带超相对论电子的增强作用可能更大。这些都有助于我们进一步了解地磁暴期间地球外辐射带超相对论电子的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of continuous geomagnetic storms on enhancements of ultrarelativistic electrons in the Earth’s outer radiation belt
Ultrarelativistic electrons (Ek > 3 MeV) are the most energetic electrons in the Earth’s outer radiation belt, which can cause serious damage to equipments on satellites. The evolutions of ultrarelativistic electrons during geomagnetic storm have been well understood, but the effects of continuous geomagnetic storm on ultrarelativistic electrons are still unclear. Using the data of the Van Allen Probes, we study the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during the three continuous geomagnetic storm events. These continuous geomagnetic storm events include the two geomagnetic storms. During the recovery phase of the first geomagnetic storm, enhanced relativistic and ultrarelativistic electrons with lower energies (≥ 3.4 MeV) are observed. These enhanced relativistic electrons could be the source of ultrarelativistic electrons and contribute to ultrarelativistic electron acceleration during the second geomagnetic storm. While 3.4 MeV electrons could be further enhanced during the second geomagnetic storm. During the recovery phase of the second small or moderate geomagnetic storm, ultrarelativistic electrons with higher cutoff energies (≥ 5.2 MeV) and higher fluxes are observed. Compared to an isolated geomagnetic storm with similar solar wind and geomagnetic conditions, ultrarelativistic electrons with higher cutoff energies and higher fluxes are observed during the recovery phase of the second geomagnetic storm. We also find that continuous geomagnetic storm events may contribute even more to enhancements of ultrarelativistic electrons in the outer radiation belt if the second geomagnetic storm is a small or moderate storm with a low solar wind dynamic pressure and short-duration main phase. These can help us to further understand the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during geomagnetic storms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信