通过金属-珀罗维斯基岩界面工程提高异质催化活性

Surfaces Pub Date : 2024-05-06 DOI:10.3390/surfaces7020020
Christoph Malleier, Simon Penner
{"title":"通过金属-珀罗维斯基岩界面工程提高异质催化活性","authors":"Christoph Malleier, Simon Penner","doi":"10.3390/surfaces7020020","DOIUrl":null,"url":null,"abstract":"In this review, we have assessed the possibility of metal–perovskite interfacial engineering to enhance the catalytic activity and selectivity in a range of heterogeneous catalytic reactions. We embarked on a literature screening of different perovskite material classes and reactions to show the versatility of the perovskite structures to induce the formation of such hetero-interfaces and the widespread nature of the phenomenon in catalytic research. There is almost no limitation on the chemical composition of the used perovskites and the nature of the catalyzed reaction, be it under reduction or oxidation conditions. We attempted to classify the perovskite materials, discuss the different strategies leading to the hetero-interfaces, and detail the synergistic action of the components of the respective interfaces. We also provide a critical assessment of the large body of data that is available in terms of a knowledge-based approach to the comparison of differently prepared interfaces with varying interfacial extent to gain a deeper understanding of the bi-functional operation of the interfaces and the urgent necessity to study and characterize such interfaces under realistic operation conditions.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal–Perovskite Interfacial Engineering to Boost Activity in Heterogeneous Catalysis\",\"authors\":\"Christoph Malleier, Simon Penner\",\"doi\":\"10.3390/surfaces7020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this review, we have assessed the possibility of metal–perovskite interfacial engineering to enhance the catalytic activity and selectivity in a range of heterogeneous catalytic reactions. We embarked on a literature screening of different perovskite material classes and reactions to show the versatility of the perovskite structures to induce the formation of such hetero-interfaces and the widespread nature of the phenomenon in catalytic research. There is almost no limitation on the chemical composition of the used perovskites and the nature of the catalyzed reaction, be it under reduction or oxidation conditions. We attempted to classify the perovskite materials, discuss the different strategies leading to the hetero-interfaces, and detail the synergistic action of the components of the respective interfaces. We also provide a critical assessment of the large body of data that is available in terms of a knowledge-based approach to the comparison of differently prepared interfaces with varying interfacial extent to gain a deeper understanding of the bi-functional operation of the interfaces and the urgent necessity to study and characterize such interfaces under realistic operation conditions.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/surfaces7020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces7020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本综述中,我们评估了金属-包晶石界面工程在一系列异相催化反应中提高催化活性和选择性的可能性。我们对不同的包晶材料类别和反应进行了文献筛选,以显示包晶结构在诱导形成此类异质界面方面的多样性,以及这种现象在催化研究中的广泛性。无论是在还原条件下还是在氧化条件下,对所使用的包晶石的化学成分和催化反应的性质几乎没有限制。我们试图对包晶石材料进行分类,讨论产生异质界面的不同策略,并详细介绍各界面成分的协同作用。我们还对现有的大量数据进行了批判性评估,以知识为基础的方法比较了不同制备方法和不同界面程度的界面,从而更深入地了解了界面的双功能操作以及在实际操作条件下研究和表征此类界面的迫切性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal–Perovskite Interfacial Engineering to Boost Activity in Heterogeneous Catalysis
In this review, we have assessed the possibility of metal–perovskite interfacial engineering to enhance the catalytic activity and selectivity in a range of heterogeneous catalytic reactions. We embarked on a literature screening of different perovskite material classes and reactions to show the versatility of the perovskite structures to induce the formation of such hetero-interfaces and the widespread nature of the phenomenon in catalytic research. There is almost no limitation on the chemical composition of the used perovskites and the nature of the catalyzed reaction, be it under reduction or oxidation conditions. We attempted to classify the perovskite materials, discuss the different strategies leading to the hetero-interfaces, and detail the synergistic action of the components of the respective interfaces. We also provide a critical assessment of the large body of data that is available in terms of a knowledge-based approach to the comparison of differently prepared interfaces with varying interfacial extent to gain a deeper understanding of the bi-functional operation of the interfaces and the urgent necessity to study and characterize such interfaces under realistic operation conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信