优化现代宽视场勘测的图像处理:基于 LSST 科学管道的强化数据管理

Yuanyu Hong, Chao Yang, Miaomiao Zhang, Yanpeng Chen, Binyang Liu
{"title":"优化现代宽视场勘测的图像处理:基于 LSST 科学管道的强化数据管理","authors":"Yuanyu Hong, Chao Yang, Miaomiao Zhang, Yanpeng Chen, Binyang Liu","doi":"10.3389/fspas.2024.1402793","DOIUrl":null,"url":null,"abstract":"Introduction: In recent decades, numerous large survey projects have been initiated to enhance our understanding of the cosmos. Among these, the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) stands out as a flagship project of the Stage IV cosmology imaging surveys, offering an open-source framework for data management and processing adaptable to various instruments.Methods: In this paper, we introduce the ‘obs_mccd’ software package, designed to serve as a bridge linking raw data from generic mosaic-CCD instruments to the LSST data management framework. The package also facilitates the deployment of tailored configurations to the pipeline middleware. To validate our data processing pipeline, we processed a batch of realistic data from a commissioning wide-field telescope.Results: We established a prototype of the quality control (QC) system capable of assessing image quality parameters such as PSF size, ellipticity, and astrometric calibration. Our findings indicate that using a fifth-order polynomial for astrometric calibration effectively characterizes geometric distortion, achieving a median average geometric distortion residual of 0.011 pixel.Discussion: When comparing the performance of our pipeline to our in-house pipeline applied to the same dataset, we observed that our new ‘obs_mccd’ pipeline offers improved precision, reducing the median average geometric distortion residual from 0.016 pixel to 0.011 pixel. This enhancement in performance underscores the benefits of the obs_mccd package in managing and processing data from wide-field surveys, and it opens up new avenues for scientific exploration with smaller, flexible survey systems complementing the LSST.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"357 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing image processing for modern wide field surveys: enhanced data management based on the LSST science pipelines\",\"authors\":\"Yuanyu Hong, Chao Yang, Miaomiao Zhang, Yanpeng Chen, Binyang Liu\",\"doi\":\"10.3389/fspas.2024.1402793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: In recent decades, numerous large survey projects have been initiated to enhance our understanding of the cosmos. Among these, the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) stands out as a flagship project of the Stage IV cosmology imaging surveys, offering an open-source framework for data management and processing adaptable to various instruments.Methods: In this paper, we introduce the ‘obs_mccd’ software package, designed to serve as a bridge linking raw data from generic mosaic-CCD instruments to the LSST data management framework. The package also facilitates the deployment of tailored configurations to the pipeline middleware. To validate our data processing pipeline, we processed a batch of realistic data from a commissioning wide-field telescope.Results: We established a prototype of the quality control (QC) system capable of assessing image quality parameters such as PSF size, ellipticity, and astrometric calibration. Our findings indicate that using a fifth-order polynomial for astrometric calibration effectively characterizes geometric distortion, achieving a median average geometric distortion residual of 0.011 pixel.Discussion: When comparing the performance of our pipeline to our in-house pipeline applied to the same dataset, we observed that our new ‘obs_mccd’ pipeline offers improved precision, reducing the median average geometric distortion residual from 0.016 pixel to 0.011 pixel. This enhancement in performance underscores the benefits of the obs_mccd package in managing and processing data from wide-field surveys, and it opens up new avenues for scientific exploration with smaller, flexible survey systems complementing the LSST.\",\"PeriodicalId\":507437,\"journal\":{\"name\":\"Frontiers in Astronomy and Space Sciences\",\"volume\":\"357 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspas.2024.1402793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2024.1402793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:近几十年来,为了增进我们对宇宙的了解,启动了许多大型巡天项目。其中,维拉-鲁宾天文台(Vera C. Rubin Observatory)的 "时空遗产巡天"(LSST)是第四阶段宇宙学成像巡天的旗舰项目,它为数据管理和处理提供了一个适用于各种仪器的开源框架:在本文中,我们介绍了 "obs_mccd "软件包,该软件包旨在作为连接通用镶嵌式 CCD 仪器的原始数据与 LSST 数据管理框架的桥梁。该软件包还有助于为管道中间件部署量身定制的配置。为了验证我们的数据处理管道,我们处理了一批来自正在调试的宽视场望远镜的真实数据:我们建立了一个质量控制(QC)系统原型,该系统能够评估图像质量参数,如 PSF 大小、椭圆度和天体测量校准。我们的研究结果表明,使用五阶多项式进行天体测量校准可以有效地描述几何失真,几何失真平均残差中值为 0.011 像素:将我们的管道性能与应用于同一数据集的内部管道性能进行比较时,我们发现新的 "obs_mccd "管道提高了精度,将平均几何失真残差中值从 0.016 像素降至 0.011 像素。这种性能的提高突出了 obs_mccd 软件包在管理和处理宽视场巡天数据方面的优势,它为利用小型、灵活的巡天系统进行科学探索开辟了新的途径,是对 LSST 的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing image processing for modern wide field surveys: enhanced data management based on the LSST science pipelines
Introduction: In recent decades, numerous large survey projects have been initiated to enhance our understanding of the cosmos. Among these, the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) stands out as a flagship project of the Stage IV cosmology imaging surveys, offering an open-source framework for data management and processing adaptable to various instruments.Methods: In this paper, we introduce the ‘obs_mccd’ software package, designed to serve as a bridge linking raw data from generic mosaic-CCD instruments to the LSST data management framework. The package also facilitates the deployment of tailored configurations to the pipeline middleware. To validate our data processing pipeline, we processed a batch of realistic data from a commissioning wide-field telescope.Results: We established a prototype of the quality control (QC) system capable of assessing image quality parameters such as PSF size, ellipticity, and astrometric calibration. Our findings indicate that using a fifth-order polynomial for astrometric calibration effectively characterizes geometric distortion, achieving a median average geometric distortion residual of 0.011 pixel.Discussion: When comparing the performance of our pipeline to our in-house pipeline applied to the same dataset, we observed that our new ‘obs_mccd’ pipeline offers improved precision, reducing the median average geometric distortion residual from 0.016 pixel to 0.011 pixel. This enhancement in performance underscores the benefits of the obs_mccd package in managing and processing data from wide-field surveys, and it opens up new avenues for scientific exploration with smaller, flexible survey systems complementing the LSST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信