Gabriela León, Emely López, Hans López, Cesar Hernández
{"title":"设计基于随机发射模式的肌电信号发生器","authors":"Gabriela León, Emely López, Hans López, Cesar Hernández","doi":"10.3991/ijoe.v20i07.47375","DOIUrl":null,"url":null,"abstract":"Electromyographic (EMG) signals exhibit complex interference patterns that comprise several single motor unit action potentials (SMUAPs). Evidence of a model that can generate EMG signals and considers intrinsic characteristics, such as long-range dependence (LRD) or shortrange dependence (SRD), or that supports the study of pathology-related signals is lacking. Therefore, the present study aimed to develop an EMG signal generator based on SRD or LRD derived from firing patterns. We used a dynamic model to parameterize up to 15 SMUAP waveforms of real EMG signals extracted from a database. Then, we used relative appearance rates for some signals based on the number of SMUAPs to generate the latter randomly. Furthermore, we complemented our model by generating a random firing pattern. The synthetic reconstruction of the signals indicated a displacement compared with their respective firing patterns, with the highest error rate being 4.1%. The model of the EMG signal generator in its current state could be useful for a specialist who intends to study the behavior of the signals, starting with the exploration of synthetic signals and then proceeding to the real signals.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":"5 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an EMG Signal Generator Based on Random Firing Patterns\",\"authors\":\"Gabriela León, Emely López, Hans López, Cesar Hernández\",\"doi\":\"10.3991/ijoe.v20i07.47375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromyographic (EMG) signals exhibit complex interference patterns that comprise several single motor unit action potentials (SMUAPs). Evidence of a model that can generate EMG signals and considers intrinsic characteristics, such as long-range dependence (LRD) or shortrange dependence (SRD), or that supports the study of pathology-related signals is lacking. Therefore, the present study aimed to develop an EMG signal generator based on SRD or LRD derived from firing patterns. We used a dynamic model to parameterize up to 15 SMUAP waveforms of real EMG signals extracted from a database. Then, we used relative appearance rates for some signals based on the number of SMUAPs to generate the latter randomly. Furthermore, we complemented our model by generating a random firing pattern. The synthetic reconstruction of the signals indicated a displacement compared with their respective firing patterns, with the highest error rate being 4.1%. The model of the EMG signal generator in its current state could be useful for a specialist who intends to study the behavior of the signals, starting with the exploration of synthetic signals and then proceeding to the real signals.\",\"PeriodicalId\":507997,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering (iJOE)\",\"volume\":\"5 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering (iJOE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v20i07.47375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i07.47375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of an EMG Signal Generator Based on Random Firing Patterns
Electromyographic (EMG) signals exhibit complex interference patterns that comprise several single motor unit action potentials (SMUAPs). Evidence of a model that can generate EMG signals and considers intrinsic characteristics, such as long-range dependence (LRD) or shortrange dependence (SRD), or that supports the study of pathology-related signals is lacking. Therefore, the present study aimed to develop an EMG signal generator based on SRD or LRD derived from firing patterns. We used a dynamic model to parameterize up to 15 SMUAP waveforms of real EMG signals extracted from a database. Then, we used relative appearance rates for some signals based on the number of SMUAPs to generate the latter randomly. Furthermore, we complemented our model by generating a random firing pattern. The synthetic reconstruction of the signals indicated a displacement compared with their respective firing patterns, with the highest error rate being 4.1%. The model of the EMG signal generator in its current state could be useful for a specialist who intends to study the behavior of the signals, starting with the exploration of synthetic signals and then proceeding to the real signals.