M. Nagahara, Satoshi Tatemoto, Takumi Ito, Otoha Fujimoto, Tetsushi Ono, M. Taniguchi, Mitsuhiro Takagi, T. Otoi
{"title":"利用人工智能设计预测奶牛最佳人工授精时间的诊断方法","authors":"M. Nagahara, Satoshi Tatemoto, Takumi Ito, Otoha Fujimoto, Tetsushi Ono, M. Taniguchi, Mitsuhiro Takagi, T. Otoi","doi":"10.3389/fanim.2024.1399434","DOIUrl":null,"url":null,"abstract":"Dairy farmers and beef cattle breeders aim for one calf per year to optimize breeding efficiency, relying on artificial insemination of both dairy and beef cows. Accurate estrus detection and timely insemination are vital for improving conception rates. However, recent challenges such as operational expansion, increased livestock numbers, and heightened milk production have complicated these processes. We developed an artificial intelligence (AI)-based pregnancy probability diagnostic tool to predict the optimal timing for artificial insemination. This tool analyzes external uterine opening image data through AI analysis, enabling high conception rates when inexperienced individuals conduct the procedure. In the initial experimental phase, images depicting the external uterine opening during artificial insemination were acquired for AI training. Static images were extracted from videos to create a pregnancy probability diagnostic model (PPDM). In the subsequent phase, an augmented set of images was introduced to enhance the precision of the PPDM. Additionally, a web application was developed for real-time assessment of optimal insemination timing, and its effectiveness in practical field settings was evaluated. The results indicated that when PPDM predicted a pregnancy probability of 70% or higher, it demonstrated a high level of reliability with accuracy, precision, and recall rates of 76.2%, 76.2%, and 100%, respectively, and an F-score of 0.86. This underscored the applicability and reliability of AI-based tools in predicting optimal insemination timing, potentially offering substantial benefits to breeding operations.","PeriodicalId":503755,"journal":{"name":"Frontiers in Animal Science","volume":"28 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a diagnostic method to predict the optimal artificial insemination timing in cows using artificial intelligence\",\"authors\":\"M. Nagahara, Satoshi Tatemoto, Takumi Ito, Otoha Fujimoto, Tetsushi Ono, M. Taniguchi, Mitsuhiro Takagi, T. Otoi\",\"doi\":\"10.3389/fanim.2024.1399434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dairy farmers and beef cattle breeders aim for one calf per year to optimize breeding efficiency, relying on artificial insemination of both dairy and beef cows. Accurate estrus detection and timely insemination are vital for improving conception rates. However, recent challenges such as operational expansion, increased livestock numbers, and heightened milk production have complicated these processes. We developed an artificial intelligence (AI)-based pregnancy probability diagnostic tool to predict the optimal timing for artificial insemination. This tool analyzes external uterine opening image data through AI analysis, enabling high conception rates when inexperienced individuals conduct the procedure. In the initial experimental phase, images depicting the external uterine opening during artificial insemination were acquired for AI training. Static images were extracted from videos to create a pregnancy probability diagnostic model (PPDM). In the subsequent phase, an augmented set of images was introduced to enhance the precision of the PPDM. Additionally, a web application was developed for real-time assessment of optimal insemination timing, and its effectiveness in practical field settings was evaluated. The results indicated that when PPDM predicted a pregnancy probability of 70% or higher, it demonstrated a high level of reliability with accuracy, precision, and recall rates of 76.2%, 76.2%, and 100%, respectively, and an F-score of 0.86. This underscored the applicability and reliability of AI-based tools in predicting optimal insemination timing, potentially offering substantial benefits to breeding operations.\",\"PeriodicalId\":503755,\"journal\":{\"name\":\"Frontiers in Animal Science\",\"volume\":\"28 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fanim.2024.1399434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fanim.2024.1399434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing a diagnostic method to predict the optimal artificial insemination timing in cows using artificial intelligence
Dairy farmers and beef cattle breeders aim for one calf per year to optimize breeding efficiency, relying on artificial insemination of both dairy and beef cows. Accurate estrus detection and timely insemination are vital for improving conception rates. However, recent challenges such as operational expansion, increased livestock numbers, and heightened milk production have complicated these processes. We developed an artificial intelligence (AI)-based pregnancy probability diagnostic tool to predict the optimal timing for artificial insemination. This tool analyzes external uterine opening image data through AI analysis, enabling high conception rates when inexperienced individuals conduct the procedure. In the initial experimental phase, images depicting the external uterine opening during artificial insemination were acquired for AI training. Static images were extracted from videos to create a pregnancy probability diagnostic model (PPDM). In the subsequent phase, an augmented set of images was introduced to enhance the precision of the PPDM. Additionally, a web application was developed for real-time assessment of optimal insemination timing, and its effectiveness in practical field settings was evaluated. The results indicated that when PPDM predicted a pregnancy probability of 70% or higher, it demonstrated a high level of reliability with accuracy, precision, and recall rates of 76.2%, 76.2%, and 100%, respectively, and an F-score of 0.86. This underscored the applicability and reliability of AI-based tools in predicting optimal insemination timing, potentially offering substantial benefits to breeding operations.