多模态数据融合在智能建筑环境感知中的应用研究

Xi Wang, Rong Guo
{"title":"多模态数据融合在智能建筑环境感知中的应用研究","authors":"Xi Wang, Rong Guo","doi":"10.3233/jifs-241252","DOIUrl":null,"url":null,"abstract":"With the rapid development of the building industry, intelligent buildings benefit from its safety, energy saving, environmental protection and integration and other advantages have been widely loved by people, most operators also realize the importance of intelligent buildings to bring people humanized and customized services, and in order to realize the personalized service of the building, multi-modal data fusion is an effective method. On the other hand, in today’s Internet of Things society, many practical applications need to deploy a large number of sensing equipment for data collection and processing, so as to carry out high-quality monitoring of the physical world, but due to the inherent limitations of these hardware equipment and the influence of factors such as the environment, single mode data often cannot be completely and comprehensively monitored to the physical world’s changing characteristics. In this development context, multi-modal data fusion has become a research hotspot in the field of machine learning. Based on this, this paper proposes a one-stage fast object detection model with multi-level fusion of multi-modal features and end-to-end characteristics for building indoor environment perception, and conducts experimental analysis on the performance of the model. The verification results show that the accuracy of the proposed method is 50.7% and the running speed is 0.107 s, which has better performance than the existing detection methods.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"17 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on application of multimodal data fusion in intelligent building environment perception\",\"authors\":\"Xi Wang, Rong Guo\",\"doi\":\"10.3233/jifs-241252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of the building industry, intelligent buildings benefit from its safety, energy saving, environmental protection and integration and other advantages have been widely loved by people, most operators also realize the importance of intelligent buildings to bring people humanized and customized services, and in order to realize the personalized service of the building, multi-modal data fusion is an effective method. On the other hand, in today’s Internet of Things society, many practical applications need to deploy a large number of sensing equipment for data collection and processing, so as to carry out high-quality monitoring of the physical world, but due to the inherent limitations of these hardware equipment and the influence of factors such as the environment, single mode data often cannot be completely and comprehensively monitored to the physical world’s changing characteristics. In this development context, multi-modal data fusion has become a research hotspot in the field of machine learning. Based on this, this paper proposes a one-stage fast object detection model with multi-level fusion of multi-modal features and end-to-end characteristics for building indoor environment perception, and conducts experimental analysis on the performance of the model. The verification results show that the accuracy of the proposed method is 50.7% and the running speed is 0.107 s, which has better performance than the existing detection methods.\",\"PeriodicalId\":194936,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-241252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-241252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着建筑行业的飞速发展,智能建筑得益于其安全、节能、环保和集成等优势受到了人们的广泛喜爱,大多数运营商也意识到智能建筑带给人们人性化和定制化服务的重要性,而为了实现建筑的个性化服务,多模态数据融合是一种有效的方法。另一方面,在当今物联网社会,很多实际应用都需要部署大量的传感设备进行数据采集和处理,从而对物理世界进行高质量的监测,但由于这些硬件设备本身的局限性以及环境等因素的影响,单一模式的数据往往无法完整、全面地监测到物理世界的变化特征。在这种发展背景下,多模态数据融合成为机器学习领域的研究热点。基于此,本文针对建筑室内环境感知提出了一种多模态特征与端到端特征多级融合的单级快速物体检测模型,并对模型的性能进行了实验分析。验证结果表明,所提方法的准确率为 50.7%,运行速度为 0.107 s,性能优于现有的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on application of multimodal data fusion in intelligent building environment perception
With the rapid development of the building industry, intelligent buildings benefit from its safety, energy saving, environmental protection and integration and other advantages have been widely loved by people, most operators also realize the importance of intelligent buildings to bring people humanized and customized services, and in order to realize the personalized service of the building, multi-modal data fusion is an effective method. On the other hand, in today’s Internet of Things society, many practical applications need to deploy a large number of sensing equipment for data collection and processing, so as to carry out high-quality monitoring of the physical world, but due to the inherent limitations of these hardware equipment and the influence of factors such as the environment, single mode data often cannot be completely and comprehensively monitored to the physical world’s changing characteristics. In this development context, multi-modal data fusion has become a research hotspot in the field of machine learning. Based on this, this paper proposes a one-stage fast object detection model with multi-level fusion of multi-modal features and end-to-end characteristics for building indoor environment perception, and conducts experimental analysis on the performance of the model. The verification results show that the accuracy of the proposed method is 50.7% and the running speed is 0.107 s, which has better performance than the existing detection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信