利用 XGBoost 和随机森林实现无线传感器网络能源最小化的混合优化方法

Ayhan Akbas, Gonca Buyrukoglu, Selim Buyrukoğlu
{"title":"利用 XGBoost 和随机森林实现无线传感器网络能源最小化的混合优化方法","authors":"Ayhan Akbas, Gonca Buyrukoglu, Selim Buyrukoğlu","doi":"10.3233/jifs-234798","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) have garnered significant attention from both the academic and industrial communities. However, the limited battery capacity of WSN nodes imposes a set of restrictions on energy dissipations, which has compelled researchers to seek ways to save and minimize energy consumption. This paper presents a hybrid optimization model to minimize energy dissipation in Wireless Sensor Networks (WSNs). Employing linear programming and a combination of XGBoost and Random Forest algorithms, it effectively predicts internode distances and network lifetime. The results demonstrate significant energy savings in WSN deployments, outperforming traditional methods. This approach contributes to the field by offering a practical, energy-efficient strategy for WSN configuration planning, highlighting the model’s applicability in real-world scenarios, where energy conservation is critical.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"110 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid optimization approach for energy minimization in wireless sensor networks leveraging XGBoost and random forest\",\"authors\":\"Ayhan Akbas, Gonca Buyrukoglu, Selim Buyrukoğlu\",\"doi\":\"10.3233/jifs-234798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) have garnered significant attention from both the academic and industrial communities. However, the limited battery capacity of WSN nodes imposes a set of restrictions on energy dissipations, which has compelled researchers to seek ways to save and minimize energy consumption. This paper presents a hybrid optimization model to minimize energy dissipation in Wireless Sensor Networks (WSNs). Employing linear programming and a combination of XGBoost and Random Forest algorithms, it effectively predicts internode distances and network lifetime. The results demonstrate significant energy savings in WSN deployments, outperforming traditional methods. This approach contributes to the field by offering a practical, energy-efficient strategy for WSN configuration planning, highlighting the model’s applicability in real-world scenarios, where energy conservation is critical.\",\"PeriodicalId\":194936,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"110 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-234798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-234798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(WSN)已引起学术界和工业界的极大关注。然而,由于 WSN 节点的电池容量有限,对能量消耗造成了一系列限制,这迫使研究人员寻求节省和尽量减少能量消耗的方法。本文提出了一种混合优化模型,以尽量减少无线传感器网络(WSN)中的能量消耗。它采用线性规划以及 XGBoost 和随机森林算法的组合,有效地预测了节点间距离和网络寿命。研究结果表明,在 WSN 部署中,能耗的节省效果显著,优于传统方法。这种方法为 WSN 配置规划提供了一种实用、节能的策略,突出了该模型在现实世界中节能至关重要的场景中的适用性,从而为该领域做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid optimization approach for energy minimization in wireless sensor networks leveraging XGBoost and random forest
Wireless Sensor Networks (WSNs) have garnered significant attention from both the academic and industrial communities. However, the limited battery capacity of WSN nodes imposes a set of restrictions on energy dissipations, which has compelled researchers to seek ways to save and minimize energy consumption. This paper presents a hybrid optimization model to minimize energy dissipation in Wireless Sensor Networks (WSNs). Employing linear programming and a combination of XGBoost and Random Forest algorithms, it effectively predicts internode distances and network lifetime. The results demonstrate significant energy savings in WSN deployments, outperforming traditional methods. This approach contributes to the field by offering a practical, energy-efficient strategy for WSN configuration planning, highlighting the model’s applicability in real-world scenarios, where energy conservation is critical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信