{"title":"基于变压器结合基流分离的新型深度学习降雨-径流模型","authors":"Shuli Wang, Wei Wang, Guizhang Zhao","doi":"10.2166/nh.2024.035","DOIUrl":null,"url":null,"abstract":"\n \n Precise long-term runoff prediction holds crucial significance in water resource management. Although the long short-term memory (LSTM) model is widely adopted for long-term runoff prediction, they encounter challenges such as error accumulation and low computational efficiency. To address these challenges, we utilized a novel method to predict runoff based on a Transformer and the base flow separation approach (BS-Former) in the Ningxia section of the Yellow River Basin. To evaluate the effectiveness of the Transformer model and its responsiveness to the base flow separation technique, we constructed LSTM and artificial neural network (ANN) models as benchmarks for comparison. The results show that Transformer outperforms the other models in terms of predictive performance and that base flow separation significantly improves the performance of the Transformer model. Specifically, the performance of BS-Former in predicting runoff 7 days in advance is comparable to that of the BS-LSTM and BS-ANN models with lead times of 4 and 2 days, respectively. In general, the BS-Former model is a promising tool for long-term runoff prediction.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel deep learning rainfall–runoff model based on Transformer combined with base flow separation\",\"authors\":\"Shuli Wang, Wei Wang, Guizhang Zhao\",\"doi\":\"10.2166/nh.2024.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Precise long-term runoff prediction holds crucial significance in water resource management. Although the long short-term memory (LSTM) model is widely adopted for long-term runoff prediction, they encounter challenges such as error accumulation and low computational efficiency. To address these challenges, we utilized a novel method to predict runoff based on a Transformer and the base flow separation approach (BS-Former) in the Ningxia section of the Yellow River Basin. To evaluate the effectiveness of the Transformer model and its responsiveness to the base flow separation technique, we constructed LSTM and artificial neural network (ANN) models as benchmarks for comparison. The results show that Transformer outperforms the other models in terms of predictive performance and that base flow separation significantly improves the performance of the Transformer model. Specifically, the performance of BS-Former in predicting runoff 7 days in advance is comparable to that of the BS-LSTM and BS-ANN models with lead times of 4 and 2 days, respectively. In general, the BS-Former model is a promising tool for long-term runoff prediction.\",\"PeriodicalId\":13096,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2024.035\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2024.035","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
A novel deep learning rainfall–runoff model based on Transformer combined with base flow separation
Precise long-term runoff prediction holds crucial significance in water resource management. Although the long short-term memory (LSTM) model is widely adopted for long-term runoff prediction, they encounter challenges such as error accumulation and low computational efficiency. To address these challenges, we utilized a novel method to predict runoff based on a Transformer and the base flow separation approach (BS-Former) in the Ningxia section of the Yellow River Basin. To evaluate the effectiveness of the Transformer model and its responsiveness to the base flow separation technique, we constructed LSTM and artificial neural network (ANN) models as benchmarks for comparison. The results show that Transformer outperforms the other models in terms of predictive performance and that base flow separation significantly improves the performance of the Transformer model. Specifically, the performance of BS-Former in predicting runoff 7 days in advance is comparable to that of the BS-LSTM and BS-ANN models with lead times of 4 and 2 days, respectively. In general, the BS-Former model is a promising tool for long-term runoff prediction.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.