关于作为主动流控制的合成射流的调查

Q3 Earth and Planetary Sciences
D. Sai Naga Bharghava, Tamal Jana, Mrinal Kaushik
{"title":"关于作为主动流控制的合成射流的调查","authors":"D. Sai Naga Bharghava,&nbsp;Tamal Jana,&nbsp;Mrinal Kaushik","doi":"10.1007/s42401-024-00301-5","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic jets (SJs) are becoming increasingly popular in aerospace engineering due to their potential applications in flow mixing enhancement, boundary layer control, and thermal load reduction. These pulsating jets involve the periodic motion of fluid in and out of a cavity through an orifice generated by a vibrating diaphragm at the cavity base. SJs are unique because they comprise working fluid and do not require an external fluid source, setting them apart from conventional flow control techniques. Although the net mass flux is zero in a complete cycle, there is a finite net momentum flux due to the imbalanced flow conditions across the orifice, and hence SJs are also known as Zero Net Mass Flux (ZNMF) jets. Numerous experimental and numerical studies have evaluated the efficacy of SJs in controlling the flow and heat transfer characteristics under various conditions, including quiescent and cross-flow situations. This review provides a comprehensive overview of the progress in synthetic jet applications in the last 40 years, specifically focusing on their potential use in flow control, heat transfer, and related applications in aerospace engineering. The strengths and limitations of SJs are discussed, and critical areas are identified for future research and development, including further optimization and refinement of these unique jets.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey on synthetic jets as active flow control\",\"authors\":\"D. Sai Naga Bharghava,&nbsp;Tamal Jana,&nbsp;Mrinal Kaushik\",\"doi\":\"10.1007/s42401-024-00301-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic jets (SJs) are becoming increasingly popular in aerospace engineering due to their potential applications in flow mixing enhancement, boundary layer control, and thermal load reduction. These pulsating jets involve the periodic motion of fluid in and out of a cavity through an orifice generated by a vibrating diaphragm at the cavity base. SJs are unique because they comprise working fluid and do not require an external fluid source, setting them apart from conventional flow control techniques. Although the net mass flux is zero in a complete cycle, there is a finite net momentum flux due to the imbalanced flow conditions across the orifice, and hence SJs are also known as Zero Net Mass Flux (ZNMF) jets. Numerous experimental and numerical studies have evaluated the efficacy of SJs in controlling the flow and heat transfer characteristics under various conditions, including quiescent and cross-flow situations. This review provides a comprehensive overview of the progress in synthetic jet applications in the last 40 years, specifically focusing on their potential use in flow control, heat transfer, and related applications in aerospace engineering. The strengths and limitations of SJs are discussed, and critical areas are identified for future research and development, including further optimization and refinement of these unique jets.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-024-00301-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00301-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

由于合成射流(SJ)在流动混合增强、边界层控制和减少热负荷方面的潜在应用,其在航空航天工程中越来越受欢迎。这些脉动喷流涉及流体通过空腔底部振动膜片产生的孔口进出空腔的周期性运动。SJ 的独特之处在于它由工作流体组成,不需要外部流体源,因此有别于传统的流量控制技术。虽然在一个完整的循环中,净质量通量为零,但由于孔口处的不平衡流动条件,存在有限的净动量通量,因此 SJ 也被称为零净质量通量 (ZNMF) 喷射。大量实验和数值研究评估了 SJ 在各种条件下(包括静止和交叉流情况)控制流动和传热特性的功效。本综述全面概述了合成射流在过去 40 年中的应用进展,特别侧重于其在航空航天工程中的流动控制、热传递和相关应用的潜在用途。文中讨论了 SJ 的优势和局限性,并确定了未来研发的关键领域,包括进一步优化和改进这些独特的射流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A survey on synthetic jets as active flow control

A survey on synthetic jets as active flow control

Synthetic jets (SJs) are becoming increasingly popular in aerospace engineering due to their potential applications in flow mixing enhancement, boundary layer control, and thermal load reduction. These pulsating jets involve the periodic motion of fluid in and out of a cavity through an orifice generated by a vibrating diaphragm at the cavity base. SJs are unique because they comprise working fluid and do not require an external fluid source, setting them apart from conventional flow control techniques. Although the net mass flux is zero in a complete cycle, there is a finite net momentum flux due to the imbalanced flow conditions across the orifice, and hence SJs are also known as Zero Net Mass Flux (ZNMF) jets. Numerous experimental and numerical studies have evaluated the efficacy of SJs in controlling the flow and heat transfer characteristics under various conditions, including quiescent and cross-flow situations. This review provides a comprehensive overview of the progress in synthetic jet applications in the last 40 years, specifically focusing on their potential use in flow control, heat transfer, and related applications in aerospace engineering. The strengths and limitations of SJs are discussed, and critical areas are identified for future research and development, including further optimization and refinement of these unique jets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信