关于严重急性呼吸系统综合症科罗娜病毒-2(SARS-CoV-2)三种变种引起的细胞内相对变化的体外研究

Q3 Biochemistry, Genetics and Molecular Biology
Poorna Khaneja, Annette Angel, Vinod Joshi, B. Angel, Shareef Mohammed Buvvaji, S. Mohan, Monika Dheer, Khusbhu Kumari, Ramesh Joshi, Rajesh Thakur, Shilpa Barthwal, A. Khan, N. Peer, Satendar Pal Singh, Neha Singh, Bhawna Sharma, Aarya Chitransh, Reshu Chauhan, Komal Tomar, Kiran Yadav
{"title":"关于严重急性呼吸系统综合症科罗娜病毒-2(SARS-CoV-2)三种变种引起的细胞内相对变化的体外研究","authors":"Poorna Khaneja, Annette Angel, Vinod Joshi, B. Angel, Shareef Mohammed Buvvaji, S. Mohan, Monika Dheer, Khusbhu Kumari, Ramesh Joshi, Rajesh Thakur, Shilpa Barthwal, A. Khan, N. Peer, Satendar Pal Singh, Neha Singh, Bhawna Sharma, Aarya Chitransh, Reshu Chauhan, Komal Tomar, Kiran Yadav","doi":"10.3233/jcb-240139","DOIUrl":null,"url":null,"abstract":"BACKGROUND: The comparative understanding between cellular basis of transmission and clinical severities caused by Wuhan, Delta and Omicron strains of SARS-CoV-2 is important. OBJECTIVE: To conduct In-Vitro studies on cellular infection caused by different variants by performing cytotoxic assays and studying the live microscopic observations. METHODS: The swab samples positive for Wuhan, Delta and Omicron strains were inoculated in the Vero cell lines and their rate of infectivity and nature of cytopathy was observed. RESULTS: The study showed maximum inter cellular connectivity among cells infected by Delta variant, followed by Wuhan and least inter cellular connections in the cells infected by Omicron variant. The Delta strain causing highest mortality as per reported epidemiological trends, showed highest inter cellular connections and maximum cell damage supporting the fastest cell to cell spread of infection and causing most mortality among patients. CONCLUSIONS: The paper reports that numerous inter cellular connections is the cause of spread of infection among cells and maximum cell damage as the cause of clinical severities. The paper sensitizes the issue that 52 subunit of viral Spike Protein could act as fusion enzyme causing the numerous inter cellular connections. Study suggests that the S2 subunit of the viral Spike Protein could be the drug target for therapeutic intervention.","PeriodicalId":15286,"journal":{"name":"Journal of Cellular Biotechnology","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vitro studies of relative intracellular alterations caused by three variants of Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2)\",\"authors\":\"Poorna Khaneja, Annette Angel, Vinod Joshi, B. Angel, Shareef Mohammed Buvvaji, S. Mohan, Monika Dheer, Khusbhu Kumari, Ramesh Joshi, Rajesh Thakur, Shilpa Barthwal, A. Khan, N. Peer, Satendar Pal Singh, Neha Singh, Bhawna Sharma, Aarya Chitransh, Reshu Chauhan, Komal Tomar, Kiran Yadav\",\"doi\":\"10.3233/jcb-240139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: The comparative understanding between cellular basis of transmission and clinical severities caused by Wuhan, Delta and Omicron strains of SARS-CoV-2 is important. OBJECTIVE: To conduct In-Vitro studies on cellular infection caused by different variants by performing cytotoxic assays and studying the live microscopic observations. METHODS: The swab samples positive for Wuhan, Delta and Omicron strains were inoculated in the Vero cell lines and their rate of infectivity and nature of cytopathy was observed. RESULTS: The study showed maximum inter cellular connectivity among cells infected by Delta variant, followed by Wuhan and least inter cellular connections in the cells infected by Omicron variant. The Delta strain causing highest mortality as per reported epidemiological trends, showed highest inter cellular connections and maximum cell damage supporting the fastest cell to cell spread of infection and causing most mortality among patients. CONCLUSIONS: The paper reports that numerous inter cellular connections is the cause of spread of infection among cells and maximum cell damage as the cause of clinical severities. The paper sensitizes the issue that 52 subunit of viral Spike Protein could act as fusion enzyme causing the numerous inter cellular connections. Study suggests that the S2 subunit of the viral Spike Protein could be the drug target for therapeutic intervention.\",\"PeriodicalId\":15286,\"journal\":{\"name\":\"Journal of Cellular Biotechnology\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcb-240139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcb-240139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

背景:比较了解 SARS-CoV-2(非典-CoV-2)武汉株、Delta 株和 Omicron 株传播的细胞基础和临床严重程度非常重要。目的:通过细胞毒性试验和活体显微镜观察,对不同变异株引起的细胞感染进行体外研究。方法:将武汉株、Delta 株和 Omicron 株阳性的咽拭子样本接种到 Vero 细胞系中,观察它们的感染率和细胞病变的性质。结果:研究结果表明,在感染 Delta 变异株的细胞中,细胞间的连通性最大,其次是武汉株,而在感染 Omicron 变异株的细胞中,细胞间的连通性最小。根据报告的流行病学趋势,造成最高死亡率的德尔塔变异株显示出最高的细胞间连接和最大的细胞损伤,支持感染在细胞间的最快传播,造成患者的最高死亡率。结论:本文报告了大量细胞间连接是细胞间感染传播的原因,而最大程度的细胞损伤则是临床严重性的原因。论文指出,病毒穗状病毒蛋白的 52 亚基可作为融合酶,导致大量细胞间连接。研究表明,病毒尖峰蛋白的 S2 亚基可能是治疗干预的药物靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-vitro studies of relative intracellular alterations caused by three variants of Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2)
BACKGROUND: The comparative understanding between cellular basis of transmission and clinical severities caused by Wuhan, Delta and Omicron strains of SARS-CoV-2 is important. OBJECTIVE: To conduct In-Vitro studies on cellular infection caused by different variants by performing cytotoxic assays and studying the live microscopic observations. METHODS: The swab samples positive for Wuhan, Delta and Omicron strains were inoculated in the Vero cell lines and their rate of infectivity and nature of cytopathy was observed. RESULTS: The study showed maximum inter cellular connectivity among cells infected by Delta variant, followed by Wuhan and least inter cellular connections in the cells infected by Omicron variant. The Delta strain causing highest mortality as per reported epidemiological trends, showed highest inter cellular connections and maximum cell damage supporting the fastest cell to cell spread of infection and causing most mortality among patients. CONCLUSIONS: The paper reports that numerous inter cellular connections is the cause of spread of infection among cells and maximum cell damage as the cause of clinical severities. The paper sensitizes the issue that 52 subunit of viral Spike Protein could act as fusion enzyme causing the numerous inter cellular connections. Study suggests that the S2 subunit of the viral Spike Protein could be the drug target for therapeutic intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cellular Biotechnology
Journal of Cellular Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
0.70
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信