处理纳米材料环境问题的通用方法

Qinyang Zhu
{"title":"处理纳米材料环境问题的通用方法","authors":"Qinyang Zhu","doi":"10.54254/2755-2721/61/20240938","DOIUrl":null,"url":null,"abstract":"With rapid industrialisation and population growth, the Earths ecological environment now confronts increasingly complex and diverse challenges. Traditional pollution treatment methods, such as activated sludge for sewage and electrostatic precipitation for air pollution, can effectively manage most environmental pollution. However, some pollutants (e.g. metals, organic dyes, gaseous trace pollutants in heavy water) either cannot be addressed by conventional methods or are prohibitively expensive. Hence, there is a pressing need to develop new environmental technologies. The emergence and development of nanotechnology and nanoscience present novel opportunities for environmental governance, as nanomaterials offer advantageous traits such as high specific surface area, catalytic activity, and photocatalytic activity. This renders nanomaterials better adsorbents, catalysts, and sensors compared to traditional materials. This article examines three methods - adsorption, filtration, and degradation - through which nanomaterials can be utilised to address environmental challenges, and the advantages and disadvantages of such methods are discussed. Finally, this article provides insights in response to the findings presented.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common methodologies for treating environmental issues with nanomaterials\",\"authors\":\"Qinyang Zhu\",\"doi\":\"10.54254/2755-2721/61/20240938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With rapid industrialisation and population growth, the Earths ecological environment now confronts increasingly complex and diverse challenges. Traditional pollution treatment methods, such as activated sludge for sewage and electrostatic precipitation for air pollution, can effectively manage most environmental pollution. However, some pollutants (e.g. metals, organic dyes, gaseous trace pollutants in heavy water) either cannot be addressed by conventional methods or are prohibitively expensive. Hence, there is a pressing need to develop new environmental technologies. The emergence and development of nanotechnology and nanoscience present novel opportunities for environmental governance, as nanomaterials offer advantageous traits such as high specific surface area, catalytic activity, and photocatalytic activity. This renders nanomaterials better adsorbents, catalysts, and sensors compared to traditional materials. This article examines three methods - adsorption, filtration, and degradation - through which nanomaterials can be utilised to address environmental challenges, and the advantages and disadvantages of such methods are discussed. Finally, this article provides insights in response to the findings presented.\",\"PeriodicalId\":350976,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\" 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/61/20240938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/61/20240938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着工业化和人口的快速增长,地球的生态环境正面临着日益复杂和多样化的挑战。传统的污染处理方法,如处理污水的活性污泥法和处理空气污染的静电沉淀法,可以有效地治理大多数环境污染。但是,有些污染物(如金属、有机染料、重水中的气态痕量污染物)传统方法无法处理,或者处理成本过高。因此,迫切需要开发新的环保技术。纳米技术和纳米科学的出现和发展为环境治理带来了新的机遇,因为纳米材料具有高比表面积、催化活性和光催化活性等优势。与传统材料相比,这使纳米材料成为更好的吸附剂、催化剂和传感器。本文探讨了利用纳米材料应对环境挑战的三种方法--吸附、过滤和降解,并讨论了这些方法的优缺点。最后,本文针对上述研究结果提出了自己的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common methodologies for treating environmental issues with nanomaterials
With rapid industrialisation and population growth, the Earths ecological environment now confronts increasingly complex and diverse challenges. Traditional pollution treatment methods, such as activated sludge for sewage and electrostatic precipitation for air pollution, can effectively manage most environmental pollution. However, some pollutants (e.g. metals, organic dyes, gaseous trace pollutants in heavy water) either cannot be addressed by conventional methods or are prohibitively expensive. Hence, there is a pressing need to develop new environmental technologies. The emergence and development of nanotechnology and nanoscience present novel opportunities for environmental governance, as nanomaterials offer advantageous traits such as high specific surface area, catalytic activity, and photocatalytic activity. This renders nanomaterials better adsorbents, catalysts, and sensors compared to traditional materials. This article examines three methods - adsorption, filtration, and degradation - through which nanomaterials can be utilised to address environmental challenges, and the advantages and disadvantages of such methods are discussed. Finally, this article provides insights in response to the findings presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信