利用多作物基因组(MultiCropGAN)进行标签空间差异的跨域早期作物绘图

Yiqun Wang, Hui Huang, Radu State
{"title":"利用多作物基因组(MultiCropGAN)进行标签空间差异的跨域早期作物绘图","authors":"Yiqun Wang, Hui Huang, Radu State","doi":"10.5194/isprs-annals-x-1-2024-241-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Mapping target crops before the harvest season for regions lacking crop-specific ground truth is critical for global food security. Utilizing multispectral remote sensing and domain adaptation methods, prior studies strive to produce precise crop maps in these regions (target domain) with the help of the crop-specific labelled remote sensing data from the source regions (source domain). However, existing approaches assume identical label spaces across those domains, a challenge often unmet in reality, necessitating a more adaptable solution. This paper introduces the Multiple Crop Mapping Generative Adversarial Neural Network (MultiCropGAN) model, comprising a generator, discriminator, and classifier. The generator transforms target domain data into the source domain, employing identity losses to retain the characteristics of the target data. The discriminator aims to distinguish them and shares the structure and weights with the classifier, which locates crops in the target domain using the generator’s output. This model’s novel capability lies in locating target crops within the target domain, overcoming differences in crop type label spaces between the target and source domains. In experiments, MultiCropGAN is benchmarked against various baseline methods. Notably, when facing differing label spaces, MultiCropGAN significantly outperforms other baseline methods. The Overall Accuracy is improved by about 10%.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross Domain Early Crop Mapping with Label Spaces Discrepancies using MultiCropGAN\",\"authors\":\"Yiqun Wang, Hui Huang, Radu State\",\"doi\":\"10.5194/isprs-annals-x-1-2024-241-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Mapping target crops before the harvest season for regions lacking crop-specific ground truth is critical for global food security. Utilizing multispectral remote sensing and domain adaptation methods, prior studies strive to produce precise crop maps in these regions (target domain) with the help of the crop-specific labelled remote sensing data from the source regions (source domain). However, existing approaches assume identical label spaces across those domains, a challenge often unmet in reality, necessitating a more adaptable solution. This paper introduces the Multiple Crop Mapping Generative Adversarial Neural Network (MultiCropGAN) model, comprising a generator, discriminator, and classifier. The generator transforms target domain data into the source domain, employing identity losses to retain the characteristics of the target data. The discriminator aims to distinguish them and shares the structure and weights with the classifier, which locates crops in the target domain using the generator’s output. This model’s novel capability lies in locating target crops within the target domain, overcoming differences in crop type label spaces between the target and source domains. In experiments, MultiCropGAN is benchmarked against various baseline methods. Notably, when facing differing label spaces, MultiCropGAN significantly outperforms other baseline methods. The Overall Accuracy is improved by about 10%.\\n\",\"PeriodicalId\":508124,\"journal\":{\"name\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-annals-x-1-2024-241-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-1-2024-241-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要。在收获季节之前为缺乏特定作物地面实况的地区绘制目标作物图对于全球粮食安全至关重要。先前的研究利用多光谱遥感和域适应方法,借助来自源区域(源域)的特定作物标签遥感数据,努力绘制这些区域(目标域)的精确作物图。然而,现有方法假定这些域的标签空间完全相同,这在现实中往往无法应对,因此需要一种适应性更强的解决方案。本文介绍了由生成器、判别器和分类器组成的多作物映射生成对抗神经网络(MultiCropGAN)模型。生成器将目标域数据转换为源域数据,利用身份损失保留目标数据的特征。判别器的目的是将它们区分开来,并与分类器共享结构和权重,分类器则利用生成器的输出在目标域中定位作物。该模型的新颖之处在于能在目标域内定位目标作物,克服了目标域与源域之间作物类型标签空间的差异。在实验中,MultiCropGAN 与各种基准方法进行了比较。值得注意的是,在面对不同的标签空间时,MultiCropGAN 的表现明显优于其他基线方法。总体准确率提高了约 10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross Domain Early Crop Mapping with Label Spaces Discrepancies using MultiCropGAN
Abstract. Mapping target crops before the harvest season for regions lacking crop-specific ground truth is critical for global food security. Utilizing multispectral remote sensing and domain adaptation methods, prior studies strive to produce precise crop maps in these regions (target domain) with the help of the crop-specific labelled remote sensing data from the source regions (source domain). However, existing approaches assume identical label spaces across those domains, a challenge often unmet in reality, necessitating a more adaptable solution. This paper introduces the Multiple Crop Mapping Generative Adversarial Neural Network (MultiCropGAN) model, comprising a generator, discriminator, and classifier. The generator transforms target domain data into the source domain, employing identity losses to retain the characteristics of the target data. The discriminator aims to distinguish them and shares the structure and weights with the classifier, which locates crops in the target domain using the generator’s output. This model’s novel capability lies in locating target crops within the target domain, overcoming differences in crop type label spaces between the target and source domains. In experiments, MultiCropGAN is benchmarked against various baseline methods. Notably, when facing differing label spaces, MultiCropGAN significantly outperforms other baseline methods. The Overall Accuracy is improved by about 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信