Shisir Ruwali, B. Fernando, S. Talebi, Lakitha O. H. Wijeratne, John Waczak, Prabuddha M. H. Madusanka, David J. Lary, John Sadler, T. Lary, Matthew Lary, Adam Aker
{"title":"根据人体生物测量反应估算吸入的二氧化氮量","authors":"Shisir Ruwali, B. Fernando, S. Talebi, Lakitha O. H. Wijeratne, John Waczak, Prabuddha M. H. Madusanka, David J. Lary, John Sadler, T. Lary, Matthew Lary, Adam Aker","doi":"10.21926/aeer.2402011","DOIUrl":null,"url":null,"abstract":"Breathing clean air is crucial for maintaining good human health. The air we inhale can significantly impact our physical and mental well-being, influenced by parameters such as particulate matter and gases (e.g. carbon dioxide, carbon monoxide, and nitrogen dioxide). Building on previous research that explored the effects of particulate matter (PM) in specific environments, analyzed using biometric indicators and machine learning models; this work focuses on the effects and estimation of inhaled nitrogen dioxide (NO2). This study involved a cyclist equipped with sensors to monitor various biometric parameters. In addition, an electric car following the cyclist measured the ambient NO2 levels using an onboard sensor. A total of 329 biometric variables have been taken into account, of which 320 biometric variables are cognitive responses extracted using an electroencephalogram (EEG) and 9 biometric variables are physiological responses extracted using several sensors. Inhaled NO2 levels are first estimated initially by making use of all 329 variables, then using 9 physiological responses and finally using only 6 of the 9 physiological responses. The study also uses a ranking method to pinpoint which biometric variables most significantly estimate inhaled NO2 levels. Furthermore, it investigates the linear and non-linear relationship between certain variables and inhaled NO2. The general precision of the prediction for the data set was moderate, as indicated by the coefficient of determination (R2) and the root mean square error (RMSE) between the true and estimated values of NO2 to be 0.35 and 5.41 ppb, respectively, in the test set. A higher accuracy in the prediction of lower values of NO2 levels was qualitatively observed using a scatter diagram and a Quantile-Quantile plot where the data were more plentiful. For more robust conclusions, additional data and refined machine learning models are necessary.","PeriodicalId":198785,"journal":{"name":"Advances in Environmental and Engineering Research","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Inhaled Nitrogen Dioxide from the Human Biometric Response\",\"authors\":\"Shisir Ruwali, B. Fernando, S. Talebi, Lakitha O. H. Wijeratne, John Waczak, Prabuddha M. H. Madusanka, David J. Lary, John Sadler, T. Lary, Matthew Lary, Adam Aker\",\"doi\":\"10.21926/aeer.2402011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breathing clean air is crucial for maintaining good human health. The air we inhale can significantly impact our physical and mental well-being, influenced by parameters such as particulate matter and gases (e.g. carbon dioxide, carbon monoxide, and nitrogen dioxide). Building on previous research that explored the effects of particulate matter (PM) in specific environments, analyzed using biometric indicators and machine learning models; this work focuses on the effects and estimation of inhaled nitrogen dioxide (NO2). This study involved a cyclist equipped with sensors to monitor various biometric parameters. In addition, an electric car following the cyclist measured the ambient NO2 levels using an onboard sensor. A total of 329 biometric variables have been taken into account, of which 320 biometric variables are cognitive responses extracted using an electroencephalogram (EEG) and 9 biometric variables are physiological responses extracted using several sensors. Inhaled NO2 levels are first estimated initially by making use of all 329 variables, then using 9 physiological responses and finally using only 6 of the 9 physiological responses. The study also uses a ranking method to pinpoint which biometric variables most significantly estimate inhaled NO2 levels. Furthermore, it investigates the linear and non-linear relationship between certain variables and inhaled NO2. The general precision of the prediction for the data set was moderate, as indicated by the coefficient of determination (R2) and the root mean square error (RMSE) between the true and estimated values of NO2 to be 0.35 and 5.41 ppb, respectively, in the test set. A higher accuracy in the prediction of lower values of NO2 levels was qualitatively observed using a scatter diagram and a Quantile-Quantile plot where the data were more plentiful. For more robust conclusions, additional data and refined machine learning models are necessary.\",\"PeriodicalId\":198785,\"journal\":{\"name\":\"Advances in Environmental and Engineering Research\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental and Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/aeer.2402011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental and Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/aeer.2402011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating Inhaled Nitrogen Dioxide from the Human Biometric Response
Breathing clean air is crucial for maintaining good human health. The air we inhale can significantly impact our physical and mental well-being, influenced by parameters such as particulate matter and gases (e.g. carbon dioxide, carbon monoxide, and nitrogen dioxide). Building on previous research that explored the effects of particulate matter (PM) in specific environments, analyzed using biometric indicators and machine learning models; this work focuses on the effects and estimation of inhaled nitrogen dioxide (NO2). This study involved a cyclist equipped with sensors to monitor various biometric parameters. In addition, an electric car following the cyclist measured the ambient NO2 levels using an onboard sensor. A total of 329 biometric variables have been taken into account, of which 320 biometric variables are cognitive responses extracted using an electroencephalogram (EEG) and 9 biometric variables are physiological responses extracted using several sensors. Inhaled NO2 levels are first estimated initially by making use of all 329 variables, then using 9 physiological responses and finally using only 6 of the 9 physiological responses. The study also uses a ranking method to pinpoint which biometric variables most significantly estimate inhaled NO2 levels. Furthermore, it investigates the linear and non-linear relationship between certain variables and inhaled NO2. The general precision of the prediction for the data set was moderate, as indicated by the coefficient of determination (R2) and the root mean square error (RMSE) between the true and estimated values of NO2 to be 0.35 and 5.41 ppb, respectively, in the test set. A higher accuracy in the prediction of lower values of NO2 levels was qualitatively observed using a scatter diagram and a Quantile-Quantile plot where the data were more plentiful. For more robust conclusions, additional data and refined machine learning models are necessary.