HME-KG:基于分层运动模型的人体运动编码知识图谱构建方法

Qi Liu, Tianyu Huang, Xiangchen Li
{"title":"HME-KG:基于分层运动模型的人体运动编码知识图谱构建方法","authors":"Qi Liu, Tianyu Huang, Xiangchen Li","doi":"10.1142/s1793962324500326","DOIUrl":null,"url":null,"abstract":"The diversity, infinity, and nonuniform description of human motion make it challenging for computers to understand human activities. To explore and reuse captured human motion data, this work defines a more comprehensive hierarchical theoretical model of human motion and proposes a standard human posture encoding scheme. We construct a domain knowledge graph (DKG) named the human motion encoding knowledge graph (HME-KG) based on posture codes and action labels. Community detection, similarity analysis, and centrality analysis are used to explore the potential value of motion data. This paper conducts an evaluation and visualization of HME-KG.","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HME-KG: A method of constructing the human motion encoding knowledge graph based on a hierarchical motion model\",\"authors\":\"Qi Liu, Tianyu Huang, Xiangchen Li\",\"doi\":\"10.1142/s1793962324500326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diversity, infinity, and nonuniform description of human motion make it challenging for computers to understand human activities. To explore and reuse captured human motion data, this work defines a more comprehensive hierarchical theoretical model of human motion and proposes a standard human posture encoding scheme. We construct a domain knowledge graph (DKG) named the human motion encoding knowledge graph (HME-KG) based on posture codes and action labels. Community detection, similarity analysis, and centrality analysis are used to explore the potential value of motion data. This paper conducts an evaluation and visualization of HME-KG.\",\"PeriodicalId\":505809,\"journal\":{\"name\":\"International Journal of Modeling, Simulation, and Scientific Computing\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modeling, Simulation, and Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793962324500326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling, Simulation, and Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962324500326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类运动的多样性、无限性和非均匀性使得计算机在理解人类活动时面临挑战。为了探索和重用捕捉到的人体运动数据,这项工作定义了一个更全面的人体运动分层理论模型,并提出了一种标准的人体姿态编码方案。我们基于姿势编码和动作标签构建了一个领域知识图谱(DKG),命名为人类动作编码知识图谱(HME-KG)。我们利用群体检测、相似性分析和中心性分析来挖掘运动数据的潜在价值。本文对 HME-KG 进行了评估和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HME-KG: A method of constructing the human motion encoding knowledge graph based on a hierarchical motion model
The diversity, infinity, and nonuniform description of human motion make it challenging for computers to understand human activities. To explore and reuse captured human motion data, this work defines a more comprehensive hierarchical theoretical model of human motion and proposes a standard human posture encoding scheme. We construct a domain knowledge graph (DKG) named the human motion encoding knowledge graph (HME-KG) based on posture codes and action labels. Community detection, similarity analysis, and centrality analysis are used to explore the potential value of motion data. This paper conducts an evaluation and visualization of HME-KG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信