系数矩阵中具有相同切换规则的切换式离散时间奇异系统的可解性和稳定性

Ninh Thi Thu
{"title":"系数矩阵中具有相同切换规则的切换式离散时间奇异系统的可解性和稳定性","authors":"Ninh Thi Thu","doi":"10.25073/2588-1124/vnumap.4926","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the problem of solvability and stability for switched discrete-time linear singular (SDLS) systems with the same switching rules in coefficient matrices under Lipschitz perturbation. Firstly, we prove the unique existence of the solution, as well as describe the solution manifold. Secondly, by utilizing a Lyapunov function, we derive certain conditions that guarantee the stability of these systems. Finally, we illustrate our results with an example. \n ","PeriodicalId":303178,"journal":{"name":"VNU Journal of Science: Mathematics - Physics","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvability and Stability of Switched Discrete-time Singular Systems with the Same Switching Rules in Coefficient Matrices\",\"authors\":\"Ninh Thi Thu\",\"doi\":\"10.25073/2588-1124/vnumap.4926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study the problem of solvability and stability for switched discrete-time linear singular (SDLS) systems with the same switching rules in coefficient matrices under Lipschitz perturbation. Firstly, we prove the unique existence of the solution, as well as describe the solution manifold. Secondly, by utilizing a Lyapunov function, we derive certain conditions that guarantee the stability of these systems. Finally, we illustrate our results with an example. \\n \",\"PeriodicalId\":303178,\"journal\":{\"name\":\"VNU Journal of Science: Mathematics - Physics\",\"volume\":\" 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Mathematics - Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1124/vnumap.4926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Mathematics - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1124/vnumap.4926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究在 Lipschitz 摄动下,系数矩阵具有相同切换规则的切换离散时间线性奇异(SDLS)系统的可解性和稳定性问题。首先,我们证明了解的唯一存在性,并描述了解流形。其次,通过利用 Lyapunov 函数,我们推导出保证这些系统稳定性的某些条件。最后,我们用一个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvability and Stability of Switched Discrete-time Singular Systems with the Same Switching Rules in Coefficient Matrices
The aim of this paper is to study the problem of solvability and stability for switched discrete-time linear singular (SDLS) systems with the same switching rules in coefficient matrices under Lipschitz perturbation. Firstly, we prove the unique existence of the solution, as well as describe the solution manifold. Secondly, by utilizing a Lyapunov function, we derive certain conditions that guarantee the stability of these systems. Finally, we illustrate our results with an example.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信