边界点、最小 L2 积分和凹性特性 III-黎曼曲面上的线性和开黎曼曲面上的纤度

IF 0.8 3区 数学 Q2 MATHEMATICS
Qi An Guan, Zhi Tong Mi, Zheng Yuan
{"title":"边界点、最小 L2 积分和凹性特性 III-黎曼曲面上的线性和开黎曼曲面上的纤度","authors":"Qi An Guan,&nbsp;Zhi Tong Mi,&nbsp;Zheng Yuan","doi":"10.1007/s10114-024-2344-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we consider a modified version of minimal <i>L</i><sup>2</sup> integrals on sublevel sets of plurisubharmonic functions related to modules at boundary points, and obtain a concavity property of the modified version. As applications, we give characterizations for the concavity degenerating to linearity on open Riemann surfaces and on fibrations over open Riemann surfaces.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 9","pages":"2091 - 2152"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary Points, Minimal L2 Integrals and Concavity Property III—Linearity on Riemann Surfaces and Fibrations over Open Riemann Surfaces\",\"authors\":\"Qi An Guan,&nbsp;Zhi Tong Mi,&nbsp;Zheng Yuan\",\"doi\":\"10.1007/s10114-024-2344-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we consider a modified version of minimal <i>L</i><sup>2</sup> integrals on sublevel sets of plurisubharmonic functions related to modules at boundary points, and obtain a concavity property of the modified version. As applications, we give characterizations for the concavity degenerating to linearity on open Riemann surfaces and on fibrations over open Riemann surfaces.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 9\",\"pages\":\"2091 - 2152\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2344-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2344-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了与边界点上的模块有关的多余弦函数子级集上的最小 L2 积分的修正版,并得到了修正版的凹性性质。作为应用,我们给出了在开黎曼曲面和开黎曼曲面上的纤维上退化为线性的凹性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary Points, Minimal L2 Integrals and Concavity Property III—Linearity on Riemann Surfaces and Fibrations over Open Riemann Surfaces

In this article, we consider a modified version of minimal L2 integrals on sublevel sets of plurisubharmonic functions related to modules at boundary points, and obtain a concavity property of the modified version. As applications, we give characterizations for the concavity degenerating to linearity on open Riemann surfaces and on fibrations over open Riemann surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信