{"title":"风速预测","authors":"Alvin Xianghan Li","doi":"10.54254/2755-2721/63/20240988","DOIUrl":null,"url":null,"abstract":"With the help of wind farms, wind energy is a vital renewable energy source that contributes significantly to the worlds energy balance. The lifespan and maintenance costs of wind turbines will be reduced with an accurate wind speed prediction. On the other hand, wind speed is highly volatile and unpredictable. Thus, it is essential to do research into creating complex models and algorithms for precise wind speed prediction. So far, some of the most promising models include Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Autoregressive Moving Average (ARMA). Python, as an advanced and versatile programming language, is exceptionally suited for scripting the algorithms of these sophisticated models. This paper will use the data from Austin Texas and apply a Support Vector Machine (SVM) for wind speed prediction involves several stages, including data collection, data preprocessing, model selection, model training, parameter optimization, model validation, and prediction. Wind energy resource optimisation, maintenance cost reduction, and total wind farm efficiency can all be significantly improved by incorporating these models into predictive analytics and continuously improving them against changing data.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind speed prediction\",\"authors\":\"Alvin Xianghan Li\",\"doi\":\"10.54254/2755-2721/63/20240988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the help of wind farms, wind energy is a vital renewable energy source that contributes significantly to the worlds energy balance. The lifespan and maintenance costs of wind turbines will be reduced with an accurate wind speed prediction. On the other hand, wind speed is highly volatile and unpredictable. Thus, it is essential to do research into creating complex models and algorithms for precise wind speed prediction. So far, some of the most promising models include Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Autoregressive Moving Average (ARMA). Python, as an advanced and versatile programming language, is exceptionally suited for scripting the algorithms of these sophisticated models. This paper will use the data from Austin Texas and apply a Support Vector Machine (SVM) for wind speed prediction involves several stages, including data collection, data preprocessing, model selection, model training, parameter optimization, model validation, and prediction. Wind energy resource optimisation, maintenance cost reduction, and total wind farm efficiency can all be significantly improved by incorporating these models into predictive analytics and continuously improving them against changing data.\",\"PeriodicalId\":350976,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\" 42\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/63/20240988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/63/20240988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With the help of wind farms, wind energy is a vital renewable energy source that contributes significantly to the worlds energy balance. The lifespan and maintenance costs of wind turbines will be reduced with an accurate wind speed prediction. On the other hand, wind speed is highly volatile and unpredictable. Thus, it is essential to do research into creating complex models and algorithms for precise wind speed prediction. So far, some of the most promising models include Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Autoregressive Moving Average (ARMA). Python, as an advanced and versatile programming language, is exceptionally suited for scripting the algorithms of these sophisticated models. This paper will use the data from Austin Texas and apply a Support Vector Machine (SVM) for wind speed prediction involves several stages, including data collection, data preprocessing, model selection, model training, parameter optimization, model validation, and prediction. Wind energy resource optimisation, maintenance cost reduction, and total wind farm efficiency can all be significantly improved by incorporating these models into predictive analytics and continuously improving them against changing data.